Вопрос задан 23.06.2023 в 10:53. Предмет Алгебра. Спрашивает Тихонов Евгений.

ДАЮ 35 БАЛЛОВ Найдите три последовательных целых числа, сумма квадратов которых равна 509.

Подсказка: х-1; х; х + 1-три последовательных числа
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Малеева Кристина.
(x - 1)² + x² + (x + 1)² = 509
x² - 2x + 1 + x² + x² + 2x + 1 = 509
3x² + 2 = 509
3x² = 507
x² = 169

x₁ = -13 x₂ = 13

1) когда x = -13 :
x - 1 = -13 - 1 = -14
x + 1 = -13 + 1 = -12

2) когда x = 13 :
x - 1 = 13 - 1 = 12
x + 1 = 13 + 1 = 14


То есть два решения к данной задаче:
(-14 ; -13 ; -12) и (12 ; 13 ; 14)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим эти три последовательных целых числа как x - 1, x и x + 1. Теперь мы можем написать уравнение, сумма квадратов которых равна 509:

(x - 1)^2 + x^2 + (x + 1)^2 = 509

Раскроем скобки:

(x^2 - 2x + 1) + x^2 + (x^2 + 2x + 1) = 509

Теперь объединим все члены:

3x^2 + 2 = 509

Вычитаем 2 с обеих сторон:

3x^2 = 507

Теперь разделим обе стороны на 3:

x^2 = 507 / 3 x^2 = 169

Теперь извлечем квадратный корень с обеих сторон:

x = ±√169 x = ±13

Теперь мы знаем, что x может быть равно 13 или -13. Так как мы ищем три последовательных числа, то у нас есть два набора ответов:

  1. Если x = 13, то три последовательных числа: 12, 13, 14.
  2. Если x = -13, то три последовательных числа: -14, -13, -12.

Оба набора удовлетворяют условию задачи.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос