Вопрос задан 23.06.2023 в 09:12. Предмет Алгебра. Спрашивает Важенина Катя.

Складіть лінійне рівняння з двома змінними, графіком якого є пряма, що проходить через початок

координат і точку A (2; -1)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шынарым Тургали.

Початок координат має координати (0; 0). Рівняння прямої, що проходить через дві задані точки, виглядає так:

\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}

У нашому випадку x_1=0, \; y_1=0, \; x_2=2, \; y_2=-1. Підставимо ці значення в рівняння:

\dfrac{y-0}{-1-0}=\dfrac{x-0}{2-0}\\-y=\dfrac{x}{2}\\y=-\dfrac{1}{2}x

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Лінійне рівняння з двома змінними для прямої, яка проходить через початок координат (0,0) і точку A (2, -1), можна записати у вигляді:

y = kx

де k - нахил (коефіцієнт), який потрібно знайти. Для цього можна використовувати координати початку координат і точку A:

  1. Початок координат (0,0): x = 0, y = 0
  2. Точка A (2, -1): x = 2, y = -1

Використовуючи ці координати, ми можемо знайти k:

k = (y2 - y1) / (x2 - x1)

де (x1, y1) = (0, 0) і (x2, y2) = (2, -1).

Отже, ми маємо:

k = (-1 - 0) / (2 - 0) = (-1) / 2 = -1/2

Отже, лінійне рівняння для прямої, яка проходить через початок координат і точку A (2, -1), виглядає так:

y = (-1/2)x

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос