Вопрос задан 22.06.2023 в 20:03. Предмет Алгебра. Спрашивает Матюшенко Екатерина.

1)-5х²<6-11х2)6х²>5х-13)-2х²+х≤-64)5х²≥4-8х​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Езерский Родион.

Ответ:

1

 - 5 {x}^{2}  < 6 - 11x \\  - 5 {x}^{2}  + 11x - 6 < 0 \\ 5 {x}^{2}  - 11x + 6 > 0 \\ D = 121 - 120  = 1 \\ x_1 =  \frac{11 + 1}{10}  = 1.2 \\ x_2 = 1 \\   +   \:  \:  \:  \:  \: -  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  + \\  -  -1  -  - 1.2 -  -  >  \\ x\in( -  \infty;  1)U(1.2; + \infty )

2.

6 {x}^{2}  > 5x - 1 \\ 6 {x}^{2}  - 5x + 1 > 0 \\ D= 25 - 24 = 1 \\ x_1 =  \frac{5 + 1}{12}  =  \frac{1}{2}  \\ x_2 =  \frac{1}{3}  \\  +   \:  \:  \:  \: - \:   \:  \:  \:  \: \:  \:  \:   +  \\  -  - \frac{1}{3}   -  - \frac{1}{2}   -  -  >  \\ x\in( -  \infty ; \frac{1}{3} )U( \frac{1}{2}  ; + \infty )

3.

 - 2 {x}^{2}  + x \leqslant  - 6 \\  - 2 {x}^{2}  + x + 6 \leqslant 0 \\ 2 {x}^{2}  - x - 6 \geqslant 0 \\ D = 1 + 48 = 49 \\ x_1 =  \frac{1 + 7}{4}  = 2 \\ x_2 =  - 1.5 \\   +  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -   \:  \:  \:  \:  \:  \:  \: + \\  -  - ( - 1.5) -  - 2 -  -  >  \\ x\in( -  \infty ;  - 1.5]U[2 ;+ \infty )

4.

5 {x}^{2}  \geqslant 4 - 8x \\ 5 {x}^{2}  + 8x - 4 \geqslant 0 \\ D= 64 + 80 = 144 \\ x_1 =  \frac{ - 8 + 12}{10}  = 0.4 \\ x_2 =  - 2 \\   +  \:  \:  \:  \:  \:   \:  \:  \:  \: - \:  \:   \:  \:  \:  \:  \:  \:  \:  + \\  -  -( - 2)  -  -0.4  -  -  >  \\ x\in( -  \infty ;  - 2]U[0.4;  + \infty )

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Let's solve each of these inequalities step by step:

  1. -5x² < 6 - 11x

First, move all terms to one side of the inequality to set it to zero:

-5x² + 11x - 6 < 0

Now, let's factor this quadratic equation:

-5x² + 11x - 6 = (-5x + 3)(x - 2)

Now, we have:

(-5x + 3)(x - 2) < 0

To find the solution, you can use the sign of each factor:

-5x + 3 < 0 (First factor) x - 2 > 0 (Second factor)

Solving each factor:

  1. For the first factor, -5x + 3 < 0: -5x + 3 < 0 -5x < -3 x > 3/5

  2. For the second factor, x - 2 > 0: x - 2 > 0 x > 2

Now, we need to combine these two conditions:

The solution is 2 < x < 3/5.

  1. 6x² > 5x - 13

First, move all terms to one side of the inequality:

6x² - 5x + 13 > 0

This is a quadratic inequality. To solve it, you can use the quadratic formula. The discriminant (the value inside the square root) must be greater than zero for real solutions:

Discriminant = b² - 4ac

In this case, a = 6, b = -5, and c = 13:

Discriminant = (-5)² - 4(6)(13) = 25 - 312 = -287

Since the discriminant is negative, there are no real solutions for this inequality.

  1. -2x² + x ≤ -6

First, move all terms to one side of the inequality:

-2x² + x + 6 ≤ 0

Now, we have a quadratic inequality. To solve it, you can use the quadratic formula. The discriminant must be greater than or equal to zero for real solutions:

Discriminant = b² - 4ac

In this case, a = -2, b = 1, and c = 6:

Discriminant = (1)² - 4(-2)(6) = 1 + 48 = 49

Since the discriminant is positive, there are real solutions. To find the solutions, you can use the quadratic formula:

x = (-b ± √(b² - 4ac)) / (2a)

x = (-1 ± √(49)) / (2(-2))

x = (-1 ± 7) / (-4)

Now, solve for x:

  1. x = (6) / (-4) = -3/2
  2. x = (-8) / (-4) = 2

So, the solutions are -3/2 and 2.

  1. 5x² ≥ 4 - 8x

First, move all terms to one side of the inequality:

5x² + 8x - 4 ≥ 0

Now, we have a quadratic inequality. To solve it, you can use the quadratic formula. The discriminant must be greater than or equal to zero for real solutions:

Discriminant = b² - 4ac

In this case, a = 5, b = 8, and c = -4:

Discriminant = (8)² - 4(5)(-4) = 64 + 80 = 144

Since the discriminant is positive, there are real solutions. To find the solutions, you can use the quadratic formula:

x = (-b ± √(b² - 4ac)) / (2a)

x = (-8 ± √(144)) / (2(5))

x = (-8 ± 12) / 10

Now, solve for x:

  1. x = (4) / 10 = 2/5
  2. x = (-20) / 10 = -2

So, the solutions are -2 and 2/5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос