
1)-5х²<6-11х2)6х²>5х-13)-2х²+х≤-64)5х²≥4-8х


Ответы на вопрос

Ответ:
1
2.
3.
4.



Let's solve each of these inequalities step by step:
- -5x² < 6 - 11x
First, move all terms to one side of the inequality to set it to zero:
-5x² + 11x - 6 < 0
Now, let's factor this quadratic equation:
-5x² + 11x - 6 = (-5x + 3)(x - 2)
Now, we have:
(-5x + 3)(x - 2) < 0
To find the solution, you can use the sign of each factor:
-5x + 3 < 0 (First factor) x - 2 > 0 (Second factor)
Solving each factor:
For the first factor, -5x + 3 < 0: -5x + 3 < 0 -5x < -3 x > 3/5
For the second factor, x - 2 > 0: x - 2 > 0 x > 2
Now, we need to combine these two conditions:
The solution is 2 < x < 3/5.
- 6x² > 5x - 13
First, move all terms to one side of the inequality:
6x² - 5x + 13 > 0
This is a quadratic inequality. To solve it, you can use the quadratic formula. The discriminant (the value inside the square root) must be greater than zero for real solutions:
Discriminant = b² - 4ac
In this case, a = 6, b = -5, and c = 13:
Discriminant = (-5)² - 4(6)(13) = 25 - 312 = -287
Since the discriminant is negative, there are no real solutions for this inequality.
- -2x² + x ≤ -6
First, move all terms to one side of the inequality:
-2x² + x + 6 ≤ 0
Now, we have a quadratic inequality. To solve it, you can use the quadratic formula. The discriminant must be greater than or equal to zero for real solutions:
Discriminant = b² - 4ac
In this case, a = -2, b = 1, and c = 6:
Discriminant = (1)² - 4(-2)(6) = 1 + 48 = 49
Since the discriminant is positive, there are real solutions. To find the solutions, you can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
x = (-1 ± √(49)) / (2(-2))
x = (-1 ± 7) / (-4)
Now, solve for x:
- x = (6) / (-4) = -3/2
- x = (-8) / (-4) = 2
So, the solutions are -3/2 and 2.
- 5x² ≥ 4 - 8x
First, move all terms to one side of the inequality:
5x² + 8x - 4 ≥ 0
Now, we have a quadratic inequality. To solve it, you can use the quadratic formula. The discriminant must be greater than or equal to zero for real solutions:
Discriminant = b² - 4ac
In this case, a = 5, b = 8, and c = -4:
Discriminant = (8)² - 4(5)(-4) = 64 + 80 = 144
Since the discriminant is positive, there are real solutions. To find the solutions, you can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
x = (-8 ± √(144)) / (2(5))
x = (-8 ± 12) / 10
Now, solve for x:
- x = (4) / 10 = 2/5
- x = (-20) / 10 = -2
So, the solutions are -2 and 2/5.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili