Вопрос задан 21.06.2023 в 15:23. Предмет Алгебра. Спрашивает Гасанова Прасковья.

1 задача)В первой цистерне в три раза больше бензина, чем во второй. Когда из первой цистерны взяли

400 л бензина, а со второй 800 л, оказалось, что в первый , цистерне бензина стало в 8 раз больше, чем во второй: Сколько бензина было в каждой цистерна сначала?​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Малькевич Глеб.

                                  Было                  Стало

1-я цистерна              3х л                 (3х - 400) л

2-я цистерна              х л                   (х - 800) л

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Уравнение:

3х - 400 = 8 · (х - 800)

3х - 400 = 8х - 6 400

6 400 - 400 = 8х - 3х

5х = 6 000

х = 6 000 : 5

х = 1 200 (л) - было во второй цистерне

3х = 3 · 1 200 = 3 600 (л) - было в первой цистерне

Ответ: 3,6 т было в первой цистерне и 1,2 т - во второй.

Проверка:

3 600 - 400 = 3 200 л - осталось в первой

1 200 - 800 = 400 л - осталось во второй

3 200 : 400 = 8 - во столько раз больше в первой

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим количество бензина в первой цистерне как "x" литров, а количество бензина во второй цистерне как "y" литров. По условию задачи, у нас есть следующие данные:

  1. В первой цистерне в три раза больше бензина, чем во второй: x = 3y.

  2. Когда из первой цистерны взяли 400 л бензина, а со второй 800 л, оказалось, что в первой цистерне бензина стало в 8 раз больше, чем во второй: (x - 400) = 8(y - 800).

У нас есть система уравнений с двумя уравнениями:

  1. x = 3y
  2. (x - 400) = 8(y - 800)

Мы можем решить эту систему уравнений. Сначала подставим значение x из первого уравнения во второе уравнение:

(3y - 400) = 8(y - 800)

Теперь решим это уравнение:

3y - 400 = 8y - 640

Выразим y:

8y - 3y = 640 - 400 5y = 240

y = 240 / 5 y = 48

Теперь, когда мы знаем значение y, мы можем найти x, используя первое уравнение:

x = 3y x = 3 * 48 x = 144

Итак, изначально в первой цистерне было 144 литра бензина, а во второй цистерне было 48 литров бензина.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос