Вопрос задан 21.06.2023 в 05:04. Предмет Алгебра. Спрашивает Павлович Дмитрий.

ДАЮ 50 БАЛЛОВ!!сложить,сравнить и вычитать дроби с разными знаменателями.Придумать по этой теме 5

примеров,ПРИМЕРОВ ОК ДА??​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Lisovska Marta.

Ответ:

1. \frac{7}{9}  +\frac{2}{3}

2. \frac{5}{7} + \frac{3}{14}

3. \frac{4}{3} - \frac{1}{21}

4. \frac{3}{2} < \frac{21}{6}

5. \frac{6}{21} = \frac{12}{42}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Adding, Comparing, and Subtracting Fractions with Different Denominators

When adding, comparing, and subtracting fractions with different denominators, there are a few steps you can follow to simplify the process. Here are five examples to illustrate these operations:

Example 1: Adding Fractions Let's add the fractions 1/4 and 3/8.

To add fractions with different denominators, we need to find a common denominator. In this case, the least common multiple (LCM) of 4 and 8 is 8. We can rewrite the fractions with the common denominator: 1/4 = 2/8 3/8 = 3/8

Now, we can add the fractions: 2/8 + 3/8 = 5/8

Therefore, 1/4 + 3/8 = 5/8.

Example 2: Comparing Fractions Let's compare the fractions 2/5 and 3/7.

To compare fractions with different denominators, we can find a common denominator or use cross-multiplication. Let's use cross-multiplication in this example: 2/5 ? 3/7

Cross-multiplication involves multiplying the numerator of the first fraction by the denominator of the second fraction and vice versa. Then, we compare the results: 2 * 7 = 14 5 * 3 = 15

Since 14 < 15, we can conclude that 2/5 is less than 3/7.

Example 3: Subtracting Fractions Let's subtract the fraction 2/3 from 5/6.

To subtract fractions with different denominators, we need to find a common denominator. In this case, the least common multiple (LCM) of 3 and 6 is 6. We can rewrite the fractions with the common denominator: 5/6 = 5/6 2/3 = 4/6

Now, we can subtract the fractions: 5/6 - 4/6 = 1/6

Therefore, 5/6 - 2/3 = 1/6.

Example 4: Adding Mixed Numbers Let's add the mixed numbers 1 1/2 and 2 3/4.

To add mixed numbers, we first convert them to improper fractions. Then, we follow the steps for adding fractions with different denominators.

1 1/2 = 3/2 2 3/4 = 11/4

Now, we can add the fractions: 3/2 + 11/4 = 6/4 + 11/4 = 17/4

To simplify the result, we can convert the improper fraction back to a mixed number: 17/4 = 4 1/4

Therefore, 1 1/2 + 2 3/4 = 4 1/4.

Example 5: Subtracting Mixed Numbers Let's subtract the mixed number 3 1/2 from 4 3/4.

To subtract mixed numbers, we first convert them to improper fractions. Then, we follow the steps for subtracting fractions with different denominators.

4 3/4 = 19/4 3 1/2 = 7/2

Now, we can subtract the fractions: 19/4 - 7/2 = 19/4 - 14/4 = 5/4

To simplify the result, we can convert the improper fraction back to a mixed number: 5/4 = 1 1/4

Therefore, 4 3/4 - 3 1/2 = 1 1/4.

I hope these examples help you understand how to add, compare, and subtract fractions with different denominators. Let me know if you have any further questions!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос