
Найти область определения функции y=√((х-10)(х+16))


Ответы на вопрос

Решение в прикрепленном файле.
Ответ: х принадлежит(-∞;-16] и [10;+∞).




Для того чтобы найти область определения функции y=√((х-10)(х+16)), нужно определить значения x, для которых выражение под корнем неотрицательное.
Итак, мы имеем следующее выражение:
(х-10)(х+16)
Из этого выражения можно заметить, что если один из множителей равен нулю, то вся функция будет равна нулю. Так как мы берем корень из этого выражения, нам нужно, чтобы оно было неотрицательным.
(x-10)(x+16) >= 0
Для того чтобы найти значения x, при которых это неравенство верно, нужно рассмотреть все промежутки, на которых каждый из множителей положителен или отрицателен.
1. Если оба множителя положительны или оба отрицательны, то их произведение будет положительным. Это означает, что это неравенство верно на этих промежутках.
(x-10 > 0 и x+16 > 0) или (x-10 < 0 и x+16 < 0)
x > 10 и x > -16 или x < 10 и x < -16
x > 10 или x < -16
2. Если один из множителей равен нулю, то их произведение будет равно нулю. Для этого случая есть два промежутка.
x-10 = 0 или x+16 = 0
x = 10 или x = -16
Таким образом, область определения функции y=√((х-10)(х+16)) - является объединением всех найденных промежутков: (-∞, -16) ∪ (-16, 10) ∪ (10, +∞).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili