Вопрос задан 20.06.2023 в 19:42. Предмет Алгебра. Спрашивает Семёнов Даня.

Розв'яжіть нерівность: 6x - 3 ≥ 2x - 25​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бутузова Катя.

Ответ:

x ∈ [7;+∞)

Объяснение:

></p>              <p>Порядок решения:</p>              <p>1) Записываем неравенство в исходном виде</p>              <p>2) Переносим х влево, а просто числа вправо</p>              <p>3) Приводим подобные в обоих частях уравнения</p>              <p>4) Делим правую часть на множитель перед х </p>              <p>5) Получаем искомый промежуток</p>              <p>6) Записываем ответ</p>              </div>                                        <div class= 0 0

Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб розв'язати дану нерівність, спробуємо перенести всі члени зміни в одну сторону, щоб отримати вираз, де змінна знаходиться на одній стороні, а константи - на іншій.

Почнемо з перенесення 2x наліво та 3 вправо:

6x - 2x ≥ -25 + 3

Зведення подібних членів дає:

4x ≥ -22

Тепер, щоб отримати x самотужки, поділимо обидві сторони на 4:

x ≥ -22/4

Зведення дробу до простого вигляду дає:

x ≥ -11/2

Таким чином, розв'язком даної нерівності є всі значення x, які більші або рівні -11/2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос