Вопрос задан 20.06.2023 в 09:51. Предмет Алгебра. Спрашивает Malishava Tamriko.

(x-a)*2+(y-b)*2=R*2 a=-2;b=1;R=6

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кий Вова.

ответ:

ддддддддддддддддд


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Да, конечно. Давайте разберем ваше выражение:

\((x - a) \cdot 2 + (y - b) \cdot 2 = R \cdot 2 + a = -2; b = 1; R = 6\).

Для начала, давайте подставим ваши значения для \(a\), \(b\) и \(R\):

\((x - (-2)) \cdot 2 + (y - 1) \cdot 2 = 6 \cdot 2 - 2\).

Упростим это выражение:

\((x + 2) \cdot 2 + (y - 1) \cdot 2 = 12 - 2\).

Раскроем скобки:

\(2x + 4 + 2y - 2 = 10\).

Теперь объединим подобные члены:

\(2x + 2y + 2 = 10\).

Вычитаем 2 из обеих сторон:

\(2x + 2y = 8\).

Теперь мы можем разделить обе стороны на 2:

\(x + y = 4\).

Итак, уравнение \((x - a) \cdot 2 + (y - b) \cdot 2 = R \cdot 2 + a = -2; b = 1; R = 6\) упрощается до \(x + y = 4\) при использовании предоставленных значений \(a\), \(b\) и \(R\).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос