
У ящику лежить 8 кульок, три з яких червоні. Яка ймовірність того, що вибрані навмання дві кульки
будуть червоними?

Ответы на вопрос

Ответ:
3/28
...............................................



Щоб визначити ймовірність того, що дві випадково обрані кульки будуть червоними, спочатку потрібно визначити загальну кількість можливих комбінацій двох кульок, а потім кількість комбінацій, в яких обидві кульки будуть червоними.
Визначення загальної кількості комбінацій
У нашому випадку, у ящику лежить 8 кульок, з яких 3 червоні. Щоб визначити загальну кількість комбінацій двох кульок, можна скористатися формулою поєднань. Формула поєднань виглядає наступним чином:C(n, k) = n! / (k! * (n-k)!)
де n - загальна кількість елементів, k - кількість елементів, які обираються.
У нашому випадку, n = 8 (загальна кількість кульок) і k = 2 (кількість кульок, які обираються). Підставляємо ці значення в формулу:
C(8, 2) = 8! / (2! * (8-2)!)
C(8, 2) = 8! / (2! * 6!)
Визначення кількості комбінацій з двома червоними кульками
Тепер потрібно визначити кількість комбінацій, в яких обидві кульки будуть червоними. У нашому випадку, ми знаємо, що у ящику лежить 8 кульок, з яких 3 червоні. Тому, кількість комбінацій з двома червоними кульками можна визначити за допомогою формули поєднань, де n = 3 (кількість червоних кульок) і k = 2 (кількість кульок, які обираються):C(3, 2) = 3! / (2! * (3-2)!)
C(3, 2) = 3! / (2! * 1!)
Визначення ймовірності
Щоб визначити ймовірність того, що дві випадково обрані кульки будуть червоними, потрібно поділити кількість комбінацій з двома червоними кульками на загальну кількість комбінацій двох кульок:Ймовірність = (кількість комбінацій з двома червоними кульками) / (загальна кількість комбінацій двох кульок)
Підставляємо значення, які ми визначили раніше:
Ймовірність = C(3, 2) / C(8, 2)
Ймовірність = (3! / (2! * 1!)) / (8! / (2! * 6!))
Ймовірність = (3 * 2 * 1) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)
Визначення числового значення ймовірності
Виконавши обчислення, отримуємо:Ймовірність = 3 / 28
Ймовірність ≈ 0.1071
Таким чином, ймовірність того, що дві випадково обрані кульки будуть червоними, становить приблизно 0.1071 або близько 10.71% [[1]].
[[1]] Source: [Math Is Fun - Combinations](https://www.mathsisfun.com/combinatorics/combinations-permutations.html)


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili