
Вопрос задан 17.06.2023 в 18:52.
Предмет Алгебра.
Спрашивает Гринченко Лёша.
Реши уравнение: z во 2 степени = 3z.


Ответы на вопрос

Отвечает Аникина Софья.
Ответ:
z²=3z
z²-3z=0
z(z-3)=0
z=0 z-3=0
z=3
Объяснение:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Конечно, давайте решим уравнение \(z^2 = 3z\).
Сначала приведем все члены уравнения в стандартную форму, приравняем его к нулю:
\[z^2 - 3z = 0.\]
Теперь попробуем разложить на множители:
\[z(z - 3) = 0.\]
Таким образом, мы получили два множителя: \(z\) и \(z - 3\). Уравнение равно нулю, если один из множителей равен нулю. Таким образом, у нас есть два возможных решения:
1. \(z = 0\), 2. \(z - 3 = 0\), что приводит к \(z = 3\).
Итак, у уравнения \(z^2 = 3z\) два решения: \(z = 0\) и \(z = 3\).


Похожие вопросы

Алгебра 232
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili