
-2х²+3х-5<0Поможіть будласка


Ответы на вопрос

Ответ:
Решение на фото,.,.,..,




Solving the Quadratic Inequality -2x² + 3x - 5 < 0
To solve the quadratic inequality -2x² + 3x - 5 < 0, we can use the method of finding the roots of the corresponding quadratic equation and then analyzing the sign of the quadratic expression in the intervals determined by these roots.
Finding the Roots of the Quadratic Equation
The roots of the quadratic equation -2x² + 3x - 5 = 0 can be found using the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
Where a = -2, b = 3, and c = -5.
Plugging these values into the quadratic formula, we get:
x = (-3 ± √(3² - 4*(-2)*(-5))) / (2*(-2))
Solving this equation will give us the roots of the quadratic equation, which we can then use to analyze the inequality.
Analyzing the Inequality
Once we have the roots of the quadratic equation, we can use them to determine the intervals where the inequality -2x² + 3x - 5 < 0 is satisfied. This can be done by plotting the roots on a number line and testing the inequality in the intervals between the roots.
Conclusion
By following these steps, we can find the solution to the inequality -2x² + 3x - 5 < 0 and determine the intervals for which the inequality holds true.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili