
Алгебра 8 класс Решить через дискриминант 3x2-7x+4=0


Ответы на вопрос

................................




Solving the Quadratic Equation 3x^2 - 7x + 4 = 0
To solve the quadratic equation 3x^2 - 7x + 4 = 0 using the discriminant, we can follow these steps:
Step 1: Identify the coefficients of the quadratic equation. In this case, the coefficients are: - a = 3 - b = -7 - c = 4
Step 2: Calculate the discriminant (D) using the formula D = b^2 - 4ac. The discriminant helps determine the nature of the solutions. - D = (-7)^2 - 4 * 3 * 4 = 49 - 48 = 1 Step 3: Analyze the discriminant to determine the nature of the solutions: - If D > 0, the equation has two distinct real solutions. - If D = 0, the equation has one real solution (a perfect square). - If D < 0, the equation has no real solutions (complex solutions).
In this case, since D = 1, the equation has two distinct real solutions.
Step 4: Use the quadratic formula to find the solutions. The quadratic formula is given by: - x = (-b ± √D) / (2a)
Substituting the values from our equation, we have: - x = (-(-7) ± √1) / (2 * 3) - x = (7 ± 1) / 6
Simplifying further, we get: - x1 = (7 + 1) / 6 = 8 / 6 = 4 / 3 - x2 = (7 - 1) / 6 = 6 / 6 = 1
Therefore, the solutions to the quadratic equation 3x^2 - 7x + 4 = 0 are: - x1 = 4/3 - x2 = 1
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili