
Sin(x/4-п/3)=-корень из 3/2


Ответы на вопрос

Ответ:
решение смотри на фотографии




To solve the equation sin(x/4 - π/3) = -√3/2, we can follow these steps:
Step 1: Simplify the equation: sin(x/4 - π/3) = -√3/2
Step 2: Identify the reference angle: The reference angle in this case is π/3. We need to find the angle within one full revolution that has the same sine value as -√3/2.
Step 3: Find the angle for the reference angle: The sine of π/3 is √3/2. Since the equation has a negative sine value, we need to find the angle in the third and fourth quadrants where the sine is -√3/2.
Step 4: Solve for x in the third and fourth quadrants: In the third quadrant, the angle is (π - π/3) = 2π/3. In the fourth quadrant, the angle is (-π/3 + 2π) = (5π/3).
Step 5: General solution: Since sine is a periodic function, we can add multiples of the period (2π) to the angles we found in step 4 to obtain the general solution.
Therefore, the general solution is: x = 2π/3 + 2πn, where n is an integer. x = 5π/3 + 2πn, where n is an integer.
These equations represent all the possible values of x that satisfy the given equation.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili