Вопрос задан 13.06.2023 в 21:14. Предмет Алгебра. Спрашивает Шматова Диана.

Упростить выражение: cos x * tg(180° + x)*tg(270° - x)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кот Мария.

\displaystyle\bf\\Cosx\cdot tg\Big(180^\circ+x\Big)\cdot tg\Big(270^\circ-x\Big)=Cosx\cdot \underbrace{tgx\cdot Ctgx}_{1}=\\\\=Cosx\cdot 1=Cosx

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения данного выражения, воспользуемся формулами тригонометрии:

  1. cos(x) * tan(180° + x) = -sin(x)
  2. tan(270° - x) = -cot(x)

Таким образом, упрощенное выражение будет выглядеть следующим образом:

cos(x) * tan(180° + x) * tan(270° - x) = -sin(x) * (-cot(x)) = sin(x) * cot(x)

Таким образом, упрощенное выражение равно sin(x) * cot(x).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос