
Используя деление «уголком», запишите в каноническом виде частное при деле- НИИ многочлена h(x) = x
3 + kx² - x - 10 на двучлен (x-2). Найдите все корни многочлена и разложите его на множители.

Ответы на вопрос

Объяснение:
У меня такое же задание было




Для деления многочлена h(x) = x^3 + kx^2 - x - 10 на двучлен (x - 2) воспользуемся делением "уголком".
markdown x^2 + (2k + 4)
__________________________
x - 2 | x^3 + kx^2 - x - 10
- (x^3 - 2x^2)
_____________________
(2k + 4)x^2 - x
- (2k + 4)x + 10
___________________
- (2k + 4)x + 10
+ (2k + 4)x - 8
_______________
2
Таким образом, получаем частное:
h(x)/(x - 2) = x^2 + (2k + 4) + 2/(x - 2)
Для нахождения корней многочлена h(x), мы ищем значения x, при которых h(x) равно нулю. Заметим, что корень x = 2 уже известен, так как (x - 2) был использован в делении. Поэтому нам остается решить уравнение x^2 + (2k + 4) = 0.
x^2 + (2k + 4) = 0 x^2 = -(2k + 4) x = ±√(-(2k + 4))
Таким образом, многочлен h(x) имеет два корня: x = 2 и x = ±√(-(2k + 4)).
Чтобы разложить многочлен h(x) на множители, нам необходимо знать значение k, так как это влияет на коэффициенты в многочлене. Если вы предоставите значение k, я смогу помочь вам с разложением многочлена на множители.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili