Вопрос задан 23.06.2018 в 09:07. Предмет Алгебра. Спрашивает Леонова Вероника.

Найдите значение параметра m при котором сумма квадратов действительных корней уравнения

x^2+2(4m–1)x+4m+1=0 будет наименьшей
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Руслан.

Для начала найдём, при каких значениях m корни вообще есть. Для этого D≥0.
D = b^2-4ac=(2(4m-1))^2-4(4m+1)=4(16m^2-8m+1)- \\ -16m-4=64m^2-32m+4-16m-4=64m^2-48m
64m^2-48m \geq 0 \\ 16m(4m-3) \geq 0 \\ m(4m-3) \geq 0 \\ m(4m-3)=0 \\ m=0; 0.75
Решая методом интервалов, получаем: m\in(-\infty; 0]\cup[0.75; +\infty). Это наша ОДЗ.

По теореме Виета
 \left \{ {{x_{1}+x_{2}=-2(4m-1)} \atop {x_{1}x_{2}=4m+1}} \right.
Попробуем подогнать сумму квадратов корней под теорему Виета:
x_{1}^{2}+x_{2}^{2}=x_{1}^{2}+2x_{1}x_{2}+x_{2}^{2}-2x_{1}x_{2}=(x_{1}+x_{2})^2-2x_{1}x_{2}
Подставляем:
(-2(4m-1))^2-2(4m+1)=64m^2-32m+4-8m-2= \\ =64m^2-40m+2
Это парабола, ветви направлены вверх, значит, её точка минимума находится в её вершине. Если она принадлежит ОДЗ, то это и будет ответом, если нет - то либо 0, либо 0.75 (концы отрезков ОДЗ).
x_{0}= \frac{-b}{2a} =  \frac{40}{128} =  \frac{10}{32}
0\ \textless \  \frac{10}{32} \ \textless \   \frac{3}{4} ( \frac{24}{32} ) - не подходит. Проверяем концы отрезков:
При m = 0 сумма квадратов корней будет равна 2.
При m = 0.75 сумма квадратов корней будет равна 64 *  \frac{9}{16} - 40 *  \frac{3}{4} + 2 = 36 - 30 + 2 = 8. Подходит первый вариант.

Ответ: при m = 0.

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос