
Вопрос задан 21.06.2018 в 15:42.
Предмет Алгебра.
Спрашивает Ландыш Айсылу.
Найти наибольшее и наименьшее значение функции y=3x^4-4x^3+1 на отрезке [0;3]


Ответы на вопрос

Отвечает Березин Влад.
Y = 3*(x^4) - 4*(x^3) + 1
Решение
Находим первую производную функции:
y' = 12x3-12x2
или
y' = 12x2(x-1)
Приравниваем ее к нулю:
12x2(x-1) = 0
x1 = 0
x2 = 1
Вычисляем значения функции
f(0) = 1
f(1) = 0
Ответ:
fmin = 0, fmax = 1
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 36x2-24x
или
y'' = 12x(3x-2)
Вычисляем:
y''(0) = 0=0 - значит точка x = 0 точка перегиба функции.
y''(1) = 12>0 - значит точка x = 1 точка минимума функции.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili