
5cosxctgx-5ctgx+2sinx=0


Ответы на вопрос




To solve the equation 5cos(x)ctg(x) - 5ctg(x) + 2sin(x) = 0, we can use trigonometric identities to simplify it.
First, we can rewrite ctg(x) as 1/tan(x):
5cos(x) * (1/tan(x)) - 5(1/tan(x)) + 2sin(x) = 0
Next, we can combine the terms on the left side of the equation by finding a common denominator for the fractions:
(5cos(x) - 5sin(x)tan(x) + 2sin(x)tan(x))/tan(x) = 0
Now, we can simplify the numerator:
5cos(x) - 3sin(x)tan(x) = 0
Next, we can use the identity tan(x) = sin(x)/cos(x) to substitute for tan(x):
5cos(x) - 3sin^2(x)/cos(x) = 0
Multiplying both sides by cos(x), we get:
5cos^2(x) - 3sin^2(x) = 0
Using the identity cos^2(x) + sin^2(x) = 1, we can substitute cos^2(x) with 1 - sin^2(x):
5(1 - sin^2(x)) - 3sin^2(x) = 0
Expanding and simplifying, we get:
5 - 8sin^2(x) = 0
Solving for sin(x), we get:
sin(x) = ±sqrt(5/8)
Since the tangent function is undefined at x = (2n + 1)π/2, we need to check our solutions to make sure they don't result in an undefined tangent. We can see that both solutions are valid for x = arcsin(±sqrt(5/8)) + nπ.
Therefore, the solutions to the equation 5cos(x)ctg(x) - 5ctg(x) + 2sin(x) = 0 are:
x = arcsin(sqrt(5/8)) + nπ, where n is an integer.
x = arcsin(-sqrt(5/8)) + nπ, where n is an integer.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili