
Y=-1(x+3)^2+4 y=(x-5)^2+4 y=-(x-2)^2+4 y=-(x-1)^2-1


Ответы на вопрос

Вот. Ответ на фотке...




These are four different equations of parabolas in vertex form. Here's what each of them means:
Y=-1(x+3)^2+4: This is a downward-facing parabola with vertex at (-3, 4).
y=(x-5)^2+4: This is an upward-facing parabola with vertex at (5, 4).
y=-(x-2)^2+4: This is a downward-facing parabola with vertex at (2, 4).
y=-(x-1)^2-1: This is a downward-facing parabola with vertex at (1, -1).
In general, the vertex form of a parabola is y = a(x - h)^2 + k, where (h, k) is the vertex of the parabola and a determines the shape and orientation of the parabola.
For example, in equation (1), the vertex is (-3, 4) and a is -1, which means that the parabola is downward-facing and opens wider than the standard parabola. In equation (2), the vertex is (5, 4) and a is 1, which means that the parabola is upward-facing and opens as the standard parabola.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili