
1) 49^x - 6-7^x-7=0 2) cos2x+sinx=0 3) 5sin^2x=3sinxcosx+4cos^2x=3 третье с решением если можно))


Ответы на вопрос

7^2x-6*7^x-7=0
7^x=t>0
t²-6t-7=0
t1=7 t2=-1<0
7^x=7⇒x=1
2) cos2x+sinx=0
1-2sin²x+sinx=0
2sin²x-sinx-1=0 решаем как квадратное через дискриминант
D=1-4*2*(-1)=9
sinx=(1-3)/4=-1/2 x=(-1)^(n+1)*π/6+πn, n∈Z
sinx=(1+3)/4=1 x=π/2+2πk, k∈Z
3)5sin²x+3sinxcosx+4cos²x=3
5sin²x+3sinxcosx+4cos²x-3(sin²x+cos²x)=0
5sin²x+3sinxcosx+4cos²x-3sin²x-3cos²x=0 однородное, разделим на cos²x
2sin²x+3sinxcosx+cos²x=0 | : cos²x
2tg²x+3tgx+1=0
D=9-4*2*1=1
tgx=(-3-1)/4=-1 x=-π/4+πn, n∈Z
tgx=(-3+1)/4=-1/2 x=-arctg1/2+πk, k∈Z



- To solve the equation 49^x - 6 - 7^x - 7 = 0, we can rearrange the terms to get:
49^x - 7^x = 13
Then, we can notice that 49^x can be expressed as (7^2)^x = 7^(2x), and 7^x can be factored out as a common factor:
7^x (7^x - 1) = 13
Solving for 7^x - 1, we get:
7^x - 1 = 13 / 7^x
Multiplying both sides by 7^x, we get:
7^(2x) - 7^x - 13 = 0
This is a quadratic equation in terms of 7^x. We can use the quadratic formula to solve for 7^x:
7^x = (1 ± √(1 + 4131)) / 2
Simplifying, we get:
7^x = (1 ± √53) / 2
Taking the logarithm base 7 of both sides, we get:
x = log_7[(1 ± √53) / 2]
So the solutions for the equation are:
x = log_7[(1 + √53) / 2] or x = log_7[(1 - √53) / 2]
- To solve the equation cos(2x) + sin(x) = 0, we can use the identity:
cos(2x) = 1 - 2sin^2(x)
Substituting this into the equation, we get:
1 - 2sin^2(x) + sin(x) = 0
Rearranging, we get:
2sin^2(x) - sin(x) + 1 = 0
This is a quadratic equation in terms of sin(x). We can use the quadratic formula to solve for sin(x):
sin(x) = [1 ± √(1 - 421)] / (2*2)
Simplifying, we get:
sin(x) = (1 ± i√7) / 4
Since sine is a real-valued function, the only solution is:
sin(x) = (1 - i√7) / 4
To find the corresponding value of x, we can use the inverse sine function:
x = arcsin[(1 - i√7) / 4]
Note that this solution involves complex numbers.
- To solve the equation 5sin^2(x) = 3sin(x)cos(x) + 4cos^2(x) = 3, we can use the identity:
sin(2x) = 2sin(x)cos(x)
Substituting this into the equation, we get:
5sin^2(x) = 3sin(x)cos(x) + 2sin^2(x) + 2cos^2(x)
Simplifying, we get:
3sin(x)cos(x) - 3sin^2(x) + 3cos^2(x) = 0
Using the identity sin^2(x) + cos^2(x) = 1, we can simplify further:
3sin(x)cos(x) - 3 + 3cos^2(x) = 0
Dividing both sides by 3cos(x), we get:
sin(x) - 1/cos(x) = 1
Using the identity 1/cos(x) = sec(x), we can rewrite the equation as:
sin(x) - sec


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili