
А)х^5+х^4-3x^2-4x-4=0 б)x^5+x^4-3x^3-3x^2+2x+2=0


Ответы на вопрос

Ответ: \frac{4x^4-4x^3+x^2}{-2x^2+5x-2}+ \frac{2x^3-7x^2+5x+1}{x-2}\leqslant0
ОДЗ:
-2x^2+5x-2\neq0\\ 2x^2-5x+2\neq0\\ D=25-16=9; \sqrt {D}=3\\\\ x_{1/2}\neq0\\\\ x_1\neq \frac{1}{2}; \ \ x_2\neq2
-2x^2+5x-2=-(x-2)(2x-1)=(2-x)(2x-1)
\frac{x^2(4x^2-4x+1)}{(2-x)(2x-1)}+ \frac{2x^3-7x^2+5x+1}{x-2}\leqslant0\\\\ \frac{x^2(2x-1)^2}{(2-x)(2x-1)}+ \frac{2x^3-7x^2+5x+1}{x-2}\leqslant0\\\\ \frac{2x^3-7x^2+5x+1}{x-2}- \frac{x^2(2x-1)}{x-2}\leqslant0\\\\ \frac{2x^3-7x^2+5x+1-2x^3+x^2}{x-2}\leqslant0\\\\ -6x^2+5x+1\leqslant0\\\\ 6x^2-5x+1=0\\ D=25+24=49; \ \sqrt D=7\\\\ x_{1/2}= \frac{5\pm7}{12}\\\\ x_1=- \frac{1}{6};\ \ x_2=1
__+__- \frac{1}{6} __-__ \frac{1}{2} __-__1__+__2__-__
Ответ: x\in [- \frac{1}{6}; \frac{1}{2})\bigcup (\frac{1 }{2};1]\bigcup(2;+\infty)
Объяснение:



a) To solve the equation:
х^5+х^4-3x^2-4x-4=0
We can start by trying to factor it. We can first notice that x = -1 is a root of the equation, as
(-1)^5 + (-1)^4 - 3(-1)^2 - 4(-1) - 4 = 0.
Using synthetic division or polynomial long division, we can then factor out (x+1) from the polynomial and obtain:
(x+1)(x^4 + 2x^3 - x^2 - 3x - 4) = 0
Now we can focus on solving the second factor:
x^4 + 2x^3 - x^2 - 3x - 4 = 0
We can try to factor this polynomial using various techniques, such as grouping, but in this case, we can notice that x=1 is another root of the equation, as
1^4 + 2(1)^3 - 1^2 - 3(1) - 4 = 0
Using polynomial long division or synthetic division, we can then factor out (x-1) and obtain:
(x-1)(x+1)(x^3 + 3x^2 + 2x - 4) = 0
The remaining cubic polynomial, x^3 + 3x^2 + 2x - 4, can be solved using various methods, such as the rational root theorem, synthetic division, or numerical methods.
b) To solve the equation:
x^5+x^4-3x^3-3x^2+2x+2=0
We can start by factoring out x^3 from the polynomial:
x^3(x^2 + x - 3) - 2(x^2 + x - 1) = 0
Now we can factor the quadratic expression inside the parentheses:
x^3(x+3)(x-1) - 2(x+1)(x-1) = 0
Factorizing this expression further, we obtain:
(x-1)(x^4 + 4x^3 + 9x^2 + 6x - 2) = 0
The quartic polynomial, x^4 + 4x^3 + 9x^2 + 6x - 2, can be solved using various methods, such as numerical methods or the Ferrari method, which involves solving a quadratic equation in a new variable.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili