Вопрос задан 12.04.2021 в 09:41. Предмет Алгебра. Спрашивает Проскурякова Полина.

СРОЧНО!! помогите пожалуйста решить 4 примера: 1) 7*х^2-9х+2=0 , 2) 7х^2-28=0 3) х^2+20х+91=0 4)

5х^2 =12х
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Илушка Наталья.
Решение на фотографии.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам решить эти уравнения!

  1. 7x^2 - 9x + 2 = 0

Для решения этого квадратного уравнения мы можем использовать формулу дискриминанта:

x = (-b ± √(b^2 - 4ac)) / 2a

где a = 7, b = -9 и c = 2.

Вычисляем дискриминант:

D = b^2 - 4ac = (-9)^2 - 4(7)(2) = 49 - 56 = -7

Дискриминант отрицательный, поэтому уравнение не имеет действительных корней.

  1. 7x^2 - 28 = 0

Для решения этого квадратного уравнения мы можем разделить обе стороны на 7:

x^2 - 4 = 0

Затем добавляем 4 к обеим сторонам:

x^2 = 4

Извлекаем квадратный корень:

x = ±2

  1. x^2 + 20x + 91 = 0

Для решения этого квадратного уравнения мы можем снова использовать формулу дискриминанта:

x = (-b ± √(b^2 - 4ac)) / 2a

где a = 1, b = 20 и c = 91.

Вычисляем дискриминант:

D = b^2 - 4ac = (20)^2 - 4(1)(91) = 400 - 364 = 36

Извлекаем квадратный корень из дискриминанта:

√D = √36 = 6

Теперь можем решить уравнение:

x = (-20 ± 6) / 2 = -10 ± 3

Таким образом, уравнение имеет два корня: x = -7 и x = -13.

  1. 5x^2 = 12x

Для решения этого уравнения мы можем сначала вынести общий множитель:

5x(x - 12/5) = 0

Таким образом, уравнение имеет два корня: x = 0 и x = 12/5.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос