
X^2+kx+7=0, x1-x2=1, k-?


Ответы на вопрос

x1+x2=-k
x1×x2=7
{x1+x2=-k
{x1-x2=1
x1+x2-x1-(-x2)=-k-1
x1+x2-x1+x2=-k-1
2x2=-k-1|÷2
x2=-(k+1)/2
x1+x2+x1-x2=-k+1
2x1=1-k|÷2
x1=(1-k)/2
x1×x2=7
((1-k)/2)×(-(k+1)/2)=7|×(-2)
(1-k)×(1+k)=-14
1-k²=-14
-k²=-14-1
-k²=-15|×(-1)
k²=15
k1=-√15
k2=√15



We can use the fact that the difference between the roots of a quadratic equation of the form ax^2 + bx + c = 0 is given by:
x1 - x2 = (-b ± sqrt(b^2 - 4ac)) / (2a)
In this case, we have the equation:
x^2 + kx + 7 = 0
Comparing this to the standard form of a quadratic equation ax^2 + bx + c = 0, we see that a = 1, b = k, and c = 7. Thus, we have:
x1 - x2 = (-k ± sqrt(k^2 - 4(1)(7))) / (2(1)) = (-k ± sqrt(k^2 - 28)) / 2
We also know that x1 - x2 = 1. Therefore, we can set up the following equation:
1 = (-k ± sqrt(k^2 - 28)) / 2
Multiplying both sides by 2 and rearranging, we get:
2 = -k ± sqrt(k^2 - 28)
Squaring both sides, we get:
4 = k^2 - 28
Adding 28 to both sides, we get:
k^2 = 32
Taking the square root of both sides (note that we are only interested in the positive square root, since k is a coefficient in a quadratic equation), we get:
k = sqrt(32)
Simplifying this expression, we get:
k = 4sqrt(2)
Therefore, the value of k is 4sqrt(2).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili