 
Log3(5x-2)>1 log0,3(5x-2)>1 log5(x^2-11x+43)>2
 0
        0
         0
        0
    Ответы на вопрос
 
         0
                    0
                     0
                    0
                 
        1)log3(5x-2)>1     одз:5x-2>0
 5x-2>3                      5x>2
 5x>5                         x>0.4
 x>1 
ответ:(1;+∞)       
2) log0,3(5x-2)>1   одз:5x-2>0
  5x-2 <0.3;                 5x>2
  5x<2.3                      x>0.4
  x<0.46 
 ответ:(0.4;0.46)
3)log5(x^2-11x+43)>2  x²-11x+43>0
 x²-11x+43>25            xɛR
 x²-11x+18>0
 x²-11x+18=0
 D=121- 72=49
 x1=(11-7)/2=2
 x2=(11+7)/2= 9
 (x-2)(x-9)>0
 применяем метод интервалов 
  +           -            +
 -------2--------------9--------
 ответ:(- ∞;2)(9;+ ∞)
  
 0
                    0
                     0
                    0
                 
            To solve the inequalities involving logarithmic expressions, we need to apply the properties of logarithms and solve for the variable x. Let's work through each inequality step by step:
- log₃(5x - 2) > 1:
To solve this inequality, we'll rewrite it in exponential form: 3¹ > 5x - 2 3 > 5x - 2 5x - 2 < 3 5x < 5 x < 1
Therefore, the solution to the inequality log₃(5x - 2) > 1 is x < 1.
- log₀,₃(5x - 2) > 1:
Note that log₀,₃(5x - 2) is undefined because the base (0.3) is less than 1. Logarithms with a base less than 1 are not defined for positive values. Hence, this inequality has no solution.
- log₅(x² - 11x + 43) > 2:
We'll rewrite the inequality in exponential form: 5² > x² - 11x + 43 25 > x² - 11x + 43 x² - 11x + 43 < 25 x² - 11x + 43 - 25 < 0 x² - 11x + 18 < 0
To solve this inequality, we can factorize the quadratic equation: (x - 2)(x - 9) < 0
Now we consider the sign of each factor:
x - 2 < 0 => x < 2 x - 9 < 0 => x < 9
To determine where the product is negative, we can create a sign chart:
markdown  -       2       9      +
Now we need to find the solution within the intervals where the product is negative. From the chart, we see that x should be between 2 and 9 (exclusive) for the inequality to hold.
Therefore, the solution to log₅(x² - 11x + 43) > 2 is 2 < x < 9.
Please note that when working with logarithmic inequalities, we need to be cautious about the domain restrictions and potential extraneous solutions.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			