
СРОЧНО!!! log1/5(x+10)=log3(1/9)


Ответы на вопрос

Ответ : 15



㏒1/5(х+10)=㏒3(3^-2)
㏒1/5(х+10)=-2
х+10=(1/5)^-2
х+10=5²
х+10=25
х=25-10
х=15 , х > -10
Ответ: х=15



To solve the equation log1/5(x+10) = log3(1/9), we can use the fact that logarithms with different bases can be related to each other using the change of base formula:
loga(x) = logb(x) / logb(a)
Using this formula, we can rewrite the equation as:
log(1/5, x+10) = log(1/9, 3)
log(1/5, x+10) = log(3) / log(1/9)
Now, we can simplify the right-hand side:
log(3) / log(1/9) = log(3) / (log(1) - log(9)) = log(3) / (0 - (-2)) = -log(3) / 2
Substituting this into the equation, we get:
log(1/5, x+10) = -log(3) / 2
To eliminate the logarithm on the left-hand side, we can use the property that loga(b) = c is equivalent to a^c = b:
1/5^(log(1/5, x+10)) = 1/√3
Taking reciprocals and squaring both sides, we get:
5^(log(1/5, x+10)) = 3
Using the change of base formula again, we can rewrite this as:
e^(log(1/5, x+10) * ln(5)) = 3
Taking the natural logarithm of both sides, we get:
log(1/5, x+10) * ln(5) = ln(3)
Solving for log(1/5, x+10), we get:
log(1/5, x+10) = ln(3) / ln(5)
Now, we can use the property that a^log(a, b) = b to eliminate the logarithm on the left-hand side:
1/5^(ln(3) / ln(5)) = x+10
Simplifying, we get:
x + 10 = 3^(ln(5) / ln(3))
x = 3^(ln(5) / ln(3)) - 10
Therefore, the solution to the equation log1/5(x+10) = log3(1/9) is x = 3^(ln(5) / ln(3)) - 10.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili