
(√3)*tg+3=0 [п/3;3п/2]


Ответы на вопрос




To solve the equation (√3)*tan(x) + 3 = 0 on the interval [π/3, 3π/2], we can use the following steps:
Step 1: Rewrite the equation (√3)*tan(x) + 3 = 0 as tan(x) = -3/√3.
Step 2: Simplify the right side of the equation. -3/√3 can be rationalized by multiplying the numerator and denominator by √3, giving -3√3/3, which simplifies to -√3.
So, we have tan(x) = -√3.
Step 3: Find the angles where the tangent function is equal to -√3. One such angle is π/3.
Step 4: Determine the reference angle. The reference angle is the positive acute angle formed between the terminal side of the angle and the x-axis. In this case, the reference angle is π/3 since it is within the specified interval.
Step 5: Add the reference angle to the multiples of π to get the complete set of solutions within the given interval.
The solutions for x in the interval [π/3, 3π/2] are:
x = π/3 + kπ, where k is an integer such that π/3 ≤ x ≤ 3π/2.
In other words, the solutions are x = π/3, 4π/3, 7π/3, 10π/3, etc., as long as these values fall within the specified interval.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili