
X^2-7x^2+6=0 Help!!! через дискриминант


Ответы на вопрос




Удачиии**************************************************************************




To solve the quadratic equation x^2 - 7x + 6 = 0 using the discriminant, we can follow these steps:
Step 1: Identify the coefficients of the quadratic equation. In this case, the coefficients are: a = 1 (coefficient of x^2) b = -7 (coefficient of x) c = 6 (constant term)
Step 2: Calculate the discriminant. The discriminant (D) is calculated using the formula: D = b^2 - 4ac. In this case, substituting the values: D = (-7)^2 - 4 * 1 * 6 D = 49 - 24 D = 25
Step 3: Analyze the value of the discriminant. The value of the discriminant tells us about the nature of the solutions:
- If D > 0, the equation has two distinct real solutions.
- If D = 0, the equation has one real solution (a repeated root).
- If D < 0, the equation has no real solutions (complex roots).
In this case, D = 25, which is greater than 0. Therefore, the equation has two distinct real solutions.
Step 4: Solve the equation. To find the solutions, we can use the quadratic formula: x = (-b ± √D) / (2a)
Substituting the values: x = (-(-7) ± √25) / (2 * 1) x = (7 ± 5) / 2
Therefore, the solutions are: x1 = (7 + 5) / 2 = 12 / 2 = 6 x2 = (7 - 5) / 2 = 2 / 2 = 1
Hence, the solutions to the quadratic equation x^2 - 7x + 6 = 0 are x = 6 and x = 1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili