
2cosx-cos2x-cos^2 x=0


Ответы на вопрос

2*cosx-(cos²x-sin²x)-cos²x=0
2*cosx-cos²x+sin²x-cos²x=0
2*cosx-2*cos²x+1-cos²x=0
-3*cos²x+2*cosx+1=0 |×(-1)
3*cos²x-2*cosx-1=0
Пусть cosx=t ⇒
3t²-2t-1=0 D=16 √D=4
t₁=1 ⇒ cosx=1 x₁=2πn
t₂=-1/3 ⇒ cosx=-1/3 x₂=arccos(-1/3)+2πn.



2cosx - cos2x - cos^2x = 0
2cosx - 2cos^2x + 1 - cos^2x = 0
-3cos^2x + 2cosx + 1 = 0
Замена: cosx = t
-3t^2 + 2t + 1 = 0
3t^2 - 2t - 1 = 0
t = 1
t = -1/3
Обратная замена:
1) cosx = 1
x = 2пk, k принадлежит Z
2) cosx = -1/3
x = - arccos(-1/3) + 2пk
x = arccos(-1/3) + 2пk
k - целые числа
Ответ: -arccos(-1/3) + 2пk, arccos(-1/3) + 2пk, 2пk, k принадлежит Z



To solve the equation 2cos(x) - cos(2x) - cos^2(x) = 0, we can simplify it using trigonometric identities. Let's go step by step:
First, we'll rewrite cos(2x) using the double angle formula: cos(2x) = 2cos^2(x) - 1.
Now the equation becomes:
2cos(x) - (2cos^2(x) - 1) - cos^2(x) = 0.
Next, distribute the negative sign:
2cos(x) - 2cos^2(x) + 1 - cos^2(x) = 0.
Combine like terms:
1 - cos^2(x) - 2cos^2(x) + 2cos(x) = 0.
Combine the similar terms with cos(x):
-3cos^2(x) + 2cos(x) + 1 = 0.
This is now a quadratic equation in terms of cos(x). Let's solve it by factoring or using the quadratic formula.
To make the equation easier to work with, let's substitute y = cos(x). The equation becomes:
-3y^2 + 2y + 1 = 0.
Now, we can factor this quadratic equation:
(-3y + 1)(y + 1) = 0.
Setting each factor equal to zero, we get:
-3y + 1 = 0 --> y = 1/3,
y + 1 = 0 --> y = -1.
Now substitute y back with cos(x):
cos(x) = 1/3 or cos(x) = -1.
To find the values of x, we can use the inverse cosine function (arccos) or use the unit circle.
- For cos(x) = 1/3: Using the calculator or inverse cosine function, we find two solutions: x = arccos(1/3) + 2πn, x = -arccos(1/3) + 2πn,
where n is an integer representing additional solutions.
- For cos(x) = -1: Using the calculator or inverse cosine function, we find one solution: x = π + 2πn,
where n is an integer representing additional solutions.
These are the general solutions to the equation 2cos(x) - cos(2x) - cos^2(x) = 0.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili