Вопрос задан 12.03.2021 в 04:49. Предмет Алгебра. Спрашивает Годовенко Настя.

Найдите корни уравнения 2x^2-5x-7=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бабурина Мария.
Держи! Все по формулам 

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения корней уравнения 2x^2 - 5x - 7 = 0 мы можем использовать формулу квадратного корня.

Формула гласит:

x = (-b ± √(b^2 - 4ac)) / (2a),

где a, b и c - коэффициенты уравнения.

В данном случае у нас есть:

a = 2, b = -5, c = -7.

Подставим значения в формулу:

x = (-(-5) ± √((-5)^2 - 4 * 2 * (-7))) / (2 * 2),

x = (5 ± √(25 + 56)) / 4,

x = (5 ± √81) / 4.

Теперь вычислим значения корней:

x1 = (5 + √81) / 4 = (5 + 9) / 4 = 14 / 4 = 7/2 = 3.5,

x2 = (5 - √81) / 4 = (5 - 9) / 4 = -4 / 4 = -1.

Таким образом, корни уравнения 2x^2 - 5x - 7 = 0 равны x1 = 3.5 и x2 = -1.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос