
Cos^2x-sin^2x=2cosx-1


Ответы на вопрос




To solve the equation cos^2x - sin^2x = 2cosx - 1, we can use the trigonometric identity cos^2x - sin^2x = cos(2x).
Substituting this identity into the equation, we have:
cos(2x) = 2cosx - 1
Now, let's simplify the equation:
2cos^2x - 1 = 2cosx - 1
Rearranging the terms:
2cos^2x - 2cosx = 0
Factoring out 2cosx:
2cosx(cosx - 1) = 0
Now we can apply the zero product property, which states that if a product of factors is equal to zero, then at least one of the factors must be zero.
Setting each factor to zero and solving for x:
2cosx = 0 cosx = 0
cosx - 1 = 0 cosx = 1
Now, let's find the solutions for x in the range of 0 to 2π (or 0 to 360 degrees).
cosx = 0: The solutions for cosx = 0 in this range are x = π/2 (90 degrees) and x = 3π/2 (270 degrees).
cosx = 1: The solution for cosx = 1 in this range is x = 0 (0 degrees).
Therefore, the solutions to the equation cos^2x - sin^2x = 2cosx - 1 in the given range are x = 0, π/2, and 3π/2.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili