
Вопрос задан 06.03.2021 в 19:53.
Предмет Алгебра.
Спрашивает Заброда Илья.
100 баллов срочно докажите плииииииииииииииииииииииииииииз



Ответы на вопрос

Отвечает Горелова Екатерина.
Доказать, что а²+5>2a
Доказательство:
а²+5>2a
a²-2a+5>0
a²-2a+1-1+5>0
(a-1)²+4>0
(a-1)²≥0 для любых а∈(-∞;+∞), т.к. квадрат числа всегда неотрицателен
4 > 0
Следовательно, сумма неотрицательного числа и положительного числа есть число положительное
Значит, (a-1)²+4>0
Следовательно верно и исходное выражение а²+5>2a, т.к. мы совершали тождественные преобразования
Итак, а²+5>2a для любых значений а
Что и требовалось доказать
Доказательство:
а²+5>2a
a²-2a+5>0
a²-2a+1-1+5>0
(a-1)²+4>0
(a-1)²≥0 для любых а∈(-∞;+∞), т.к. квадрат числа всегда неотрицателен
4 > 0
Следовательно, сумма неотрицательного числа и положительного числа есть число положительное
Значит, (a-1)²+4>0
Следовательно верно и исходное выражение а²+5>2a, т.к. мы совершали тождественные преобразования
Итак, а²+5>2a для любых значений а
Что и требовалось доказать


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili