Вопрос задан 03.03.2021 в 02:44. Предмет Алгебра. Спрашивает Миронова Юлия.

Помогите, пожалуйста: lg25lg20+2(lg2)^2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Перец Кристина.
lg25lg20+2lg^22 = 2lg5lg20+2lg^22=2lg5(lg4+lg5) + 2lg^22 =  \\  \\ =2lg5(lg5+2lg2)+2lg^22=2lg^25+4lg5lg2+2lg^22= \\  \\ =2(lg^25+2lg5lg2+lg^22) = 2(lg5+lg2)^2=2(lg10)^2=2*1 = 2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте посчитаем выражение: lg25lg20 + 2(lg2)^2.

Сначала рассмотрим каждую часть по отдельности.

lg25 = log по основанию 10 от 25. Так как 10 в какой степени равно 25? Это 10^2 = 100. Значит, lg25 = 2.

lg20 = log по основанию 10 от 20. Аналогично, это 10^1.301 = примерно 20.079.

Теперь рассмотрим (lg2)^2 = (log по основанию 10 от 2)^2. Значение lg2 примерно равно 0.301, поэтому (lg2)^2 примерно равно 0.301^2 = 0.0906.

Теперь подставим все значения в исходное выражение:

lg25lg20 + 2(lg2)^2 = 2 * 20.079 + 2 * 0.0906 = 40.158 + 0.1812 = 40.3392.

Таким образом, значение выражения lg25lg20 + 2(lg2)^2 равно примерно 40.3392.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос