
Sin x - sin 2x + sin 3x - sin 4x = 0


Ответы на вопрос

k∈Z
Ответ:



To solve the equation sin(x) - sin(2x) + sin(3x) - sin(4x) = 0, we can use some trigonometric identities to simplify it. Let's break it down step by step:
Step 1: Rearrange the terms. sin(x) - sin(2x) + sin(3x) - sin(4x) = 0
Step 2: Express sin(2x) and sin(4x) in terms of sin(x) and sin(3x) using double-angle identities. sin(x) - 2sin(x)cos(x) + 3sin(x) - 4sin(x)cos(3x) = 0
Step 3: Group the terms involving sin(x) and factor it out. sin(x) + 3sin(x) - 2sin(x)cos(x) - 4sin(x)cos(3x) = 0
Step 4: Factor out sin(x) from the first two terms and cos(x) from the last two terms. sin(x)(1 + 3 - 2cos(x) - 4cos(3x)) = 0
Step 5: Set each factor equal to zero and solve for x separately.
Factor 1: sin(x) = 0 This occurs when x = 0 or x = π. These are the solutions for sin(x) = 0.
Factor 2: 1 + 3 - 2cos(x) - 4cos(3x) = 0 Simplifying the equation gives: 4 - 2cos(x) - 4cos(3x) = 0 2 - cos(x) - 2cos(3x) = 0
Unfortunately, this equation cannot be easily solved analytically. To find the solutions, we would typically use numerical methods or graphing calculators.
So, the solutions for the given equation are x = 0, x = π, and the remaining solutions for the equation 2 - cos(x) - 2cos(3x) = 0 need to be approximated using numerical methods or graphical analysis.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili