
-4x^2+(4/9)=0 -5x^2+(5/16)x=0


Ответы на вопрос

-4x**+ 4/9 = 0
-4x** = -4/9
x** = -4/9 * -1/4
x** = 1/9
x = 1/3
x = -1/3
-5x** + 5/16x = 0
5x(-x+ 1/16) = 0
5x = 0 -x+1/16 = 0
x = 0 -x = -1/16
x = 1/16



To solve these quadratic equations, we can use the quadratic formula:
For an equation of the form ax^2 + bx + c = 0, the quadratic formula states that the solutions for x are given by:
x = (-b ± √(b^2 - 4ac)) / (2a)
Let's solve each equation step by step:
- -4x^2 + (4/9) = 0:
Here, a = -4, b = 0, and c = 4/9.
Using the quadratic formula, we have:
x = (-0 ± √(0^2 - 4(-4)(4/9))) / (2(-4)) = (± √(0 - (-64/9))) / (-8) = (± √(64/9)) / (-8) = (± (8/3)) / (-8)
Simplifying further:
x = ± (8/3) / (-8) = ± (8/3) * (-1/8) = ± (1/3)
Therefore, the solutions for the first equation are x = 1/3 and x = -1/3.
- -5x^2 + (5/16)x = 0:
Here, a = -5, b = 5/16, and c = 0.
Using the quadratic formula, we have:
x = (-(5/16) ± √((5/16)^2 - 4(-5)(0))) / (2(-5)) = (-(5/16) ± √(25/256)) / (-10) = (-(5/16) ± (5/16)) / (-10)
Simplifying further:
x = (-(5/16) + (5/16)) / (-10) or x = (-(5/16) - (5/16)) / (-10) = 0 / (-10) or x = (-10/16) / (-10) = 0 or x = 1/16
Therefore, the solutions for the second equation are x = 0 and x = 1/16.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili