
2 sin ( 3п/2 + 2x) = 1


Ответы на вопрос

x=(-1)^k+1*2pi/3+pi/2*k, k∈Z



To solve the equation 2 sin(3π/2 + 2x) = 1, we can follow these steps:
Step 1: Simplify the equation Since sin(3π/2 + 2x) = sin(3π/2)cos(2x) + cos(3π/2)sin(2x) = -cos(2x), we can rewrite the equation as: 2(-cos(2x)) = 1
Step 2: Divide both sides by -2 Dividing both sides of the equation by -2, we get: cos(2x) = -1/2
Step 3: Solve for 2x To find the solutions for cos(2x) = -1/2, we need to find the angles whose cosine is -1/2. One such angle is π/3. Since cosine is an even function, another solution is the reflection of π/3 about the y-axis, which is 2π/3.
So, we have: 2x = π/3 + 2kπ or 2x = 2π/3 + 2kπ
where k is an integer.
Step 4: Solve for x Dividing both sides of each equation by 2, we find: x = π/6 + kπ or x = π/3 + kπ
where k is an integer.
Therefore, the solutions to the equation 2 sin(3π/2 + 2x) = 1 are: x = π/6 + kπ or x = π/3 + kπ
where k is an integer.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili