
Lg^2 (tg^2x)+lg(cosx)=lg(sinx)


Ответы на вопрос

lg^2 (tg^2 x) + lg (cos x) = lg (sin x)
Область определения:
{ sin x > 0
{ cos x > 0
x € (2pi*k; pi/2+2pi*k)
[lg (tg^2 x)]^2 = lg (sin x) - lg (cos x)
[2lg (tg x)]^2 = lg (sin x/cos x) = lg (tg x)
4[lg (tg x)]^2 - lg (tg x) = 0
lg (tg x)*(4lg (tg x) - 1) = 0
1) lg (tg x) = 0
tg x = 1
x1 = pi/4 + pi*n
С учетом Обл. Опр. x1 = pi/4 + 2pi*n
2) 4lg (tg x) - 1 = 0
lg(tg x) = 1/4 = lg(10^(1/4))
tg x = 10^(1/4) = корень 4 степени из 10
x2 = arctg (10^(1/4)) + pi*k
С учетом Обл. Опр. x2 = arctg(10^(1/4)) + 2pi*k



To solve the equation lg^2(tg^2x) + lg(cosx) = lg(sinx)
, let's break it down step by step:
Start by converting the equation from logarithmic form to exponential form. Recall that
lg(x)
is equivalent tolog base 10 of x
. The exponential form is10^y = x
, wherey
is the logarithmic expression andx
is the value.Therefore, we can rewrite the equation as follows:
10^(lg^2(tg^2x)) * 10^(lg(cosx)) = 10^(lg(sinx))
Apply the properties of logarithms to simplify the equation. Recall that
lg^2(tg^2x) = (lg(tg^2x))^2
and10^(lg(x)) = x
. We can simplify the equation as follows:(tg^2x)^2 * cosx = sinx
Rewrite
tg^2x
as(sinx/cosx)^2
:((sinx/cosx)^2)^2 * cosx = sinx
Simplify the equation further:
(sin^2x/cos^2x) * cosx = sinx
Cancel out the common factors of
cosx
:sin^2x = sinx
Rearrange the equation and factor out
sinx
:sinx * (sinx - 1) = 0
Now, set each factor equal to zero and solve for
x
:sinx = 0
sinx - 1 = 0
Solving these equations, we find two sets of solutions:
- For
sinx = 0
, the solutions arex = 0 + nπ
(wheren
is an integer). - For
sinx - 1 = 0
, the solution isx = π/2
.
Therefore, the solutions to the equation lg^2(tg^2x) + lg(cosx) = lg(sinx)
are x = 0 + nπ
and x = π/2
, where n
is an integer.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili