
Построить график и найти промежутки возрастания и убывания функции у=1-3х


Ответы на вопрос





Функция у = 1 - 3х представляет собой линейную функцию с коэффициентом наклона -3. Чтобы построить график и найти промежутки возрастания и убывания этой функции, нам нужно определить, где коэффициент наклона положителен (возрастание) и отрицателен (убывание).
График линейной функции у = 1 - 3х будет прямой линией, так как у нее нет других слагаемых или переменных. Коэффициент наклона -3 означает, что для каждого единичного изменения х, у будет уменьшаться на 3.
Для поиска промежутков возрастания и убывания нам нужно установить условия для значения коэффициента наклона -3:
Коэффициент наклона положителен (+3): Это означает, что функция возрастает. Установим условие: 3 > 0 Решением этого неравенства является любое значение х.
Коэффициент наклона отрицателен (-3): Это означает, что функция убывает. Установим условие: -3 < 0 Решением этого неравенства также является любое значение х.
Таким образом, функция у = 1 - 3х возрастает и убывает на всей числовой оси.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili