
Cos78+cos18 тригонометрия решение


Ответы на вопрос

cos78+cos18=2.cos(78+18)/2.cos (78-18)/2=2.cos48.cos30=2.V3/2.cos48=V3.cos48






To solve the expression cos(78°) + cos(18°), we can use the trigonometric identity:
cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
Using this identity, we can rewrite the expression as follows:
cos(78°) + cos(18°) = cos(60° + 18°) + cos(18°)
Now, let's use the trigonometric identity mentioned above to simplify further:
cos(78°) + cos(18°) = [cos(60°)cos(18°) - sin(60°)sin(18°)] + cos(18°)
Since cos(60°) = 0.5 and sin(60°) = √3/2, we can substitute these values in:
cos(78°) + cos(18°) = [0.5 * cos(18°) - (√3/2) * sin(18°)] + cos(18°)
Combining like terms, we have:
cos(78°) + cos(18°) = 1.5 * cos(18°) - (√3/2) * sin(18°)
At this point, we need to know the exact values of cos(18°) and sin(18°). In trigonometry, we can determine these values using various methods such as geometric constructions or numerical approximations.
For this calculation, we'll use the fact that cos(18°) = (√5 - 1) / 4 and sin(18°) = (√10 - √2) / 4, which can be derived from the golden ratio.
Substituting these values into the equation:
cos(78°) + cos(18°) = 1.5 * [ (√5 - 1) / 4 ] - (√3/2) * [ (√10 - √2) / 4 ]
Simplifying further:
cos(78°) + cos(18°) = (3√5 - 3) / 8 - (√30 - √6) / 8
Finally, combining the terms with the same denominator:
cos(78°) + cos(18°) = (3√5 - √30 - 3 + √6) / 8
Therefore, the simplified value of cos(78°) + cos(18°) is (3√5 - √30 - 3 + √6) / 8.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili