
А1+а3+а5+а7=36 а10=21 найти сумму 40 членов арифметической прогрессии an


Ответы на вопрос

ищи по формуле аn=а1+d(n-1)



а1+а3+а5+а7=36
a1+(a1+2d)+(a1+4d)+(a1+6d)=36
4a1+12d=36
Решим систему
a1+3d=9
a1+9d=21
6d=12
d=2
a1=9-3d=9-6=3
S(40)=(2a1+39d)*40/2=(6+78)*40/2=1680
Ответ: 1680



Для решения этой задачи нам необходимо найти значения первого члена а1 и шага прогрессии d.
Мы знаем, что сумма первых четырех членов арифметической прогрессии равна 36: а1 + а3 + а5 + а7 = 36.
Также дано, что десятый член прогрессии равен 21: а10 = 21.
Мы можем использовать эти два уравнения, чтобы найти значения а1 и d.
Сначала, рассмотрим уравнение а1 + а3 + а5 + а7 = 36. Мы можем заметить, что каждое следующее число четное, а каждое нечетное равно предыдущему плюс 2. То есть, а1 + а3 + а5 + а7 = а1 + (а1 + 2) + (а1 + 4) + (а1 + 6).
Подставляем это в уравнение: а1 + (а1 + 2) + (а1 + 4) + (а1 + 6) = 36.
Упрощаем уравнение: 4а1 + 12 = 36, 4а1 = 36 - 12, 4а1 = 24, а1 = 6.
Теперь, когда мы знаем а1, мы можем найти d, используя уравнение а10 = 21.
Подставляем в него найденное значение а1: а1 + 9d = 21, 6 + 9d = 21, 9d = 21 - 6, 9d = 15, d = 15 / 9, d = 5/3.
Теперь у нас есть значения а1 = 6 и d = 5/3.
Для нахождения суммы 40 членов арифметической прогрессии, мы можем использовать формулу суммы прогрессии Sn = (n/2)(2a1 + (n-1)d), где n - количество членов прогрессии.
Подставляем значения: Sn = (40/2)(26 + (40-1)(5/3)).
Выполняем вычисления: Sn = 20(12 + 39*(5/3)), Sn = 20(12 + 65), Sn = 20(77), Sn = 1540.
Таким образом, сумма 40 членов арифметической прогрессии равна 1540.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili