
F(x)=1/(2sin3x) 2(sin2x+cos2x)/cosx-sinx-cos3x+sin3x


Ответы на вопрос

sin2x + cos2x = 1
tgx = sinxcosx ctgx = cosxsinxtgx ctgx = 1
tg2x + 1 = 1cos2x ctg2x + 1 = 1sin2xФормулы двойного аргументаsin2x = 2sinx cosx
sin2x = 2tgx = 2ctgx = 21 + tg2x1 + ctg2xtgx + ctgxcos2x = cos2x - sin2x = 2cos2x - 1 = 1 - 2sin2x
cos2x = 1 - tg2x = ctg2x - 1 = ctgx - tgx1 + tg2xctg2x + 1ctgx + tgx tg2x = 2tgx = 2ctgx = 21 - tg2xctg2x - 1ctgx - tgx ctg2x = ctg2x - 1 = ctgx - tgx2ctgx2


To simplify the expression, let's start by breaking it down step by step.
Given function: F(x) = 1 / (2sin(3x)) * [2(sin(2x) + cos(2x))] / [cos(x) - sin(x) - cos(3x) + sin(3x)]
Step 1: Simplify the numerator of the fraction. The numerator is 2(sin(2x) + cos(2x)). We can further simplify this expression using the trigonometric identity sin(2x) + cos(2x) = 1.
Numerator = 2(sin(2x) + cos(2x)) = 2(1) = 2
Step 2: Simplify the denominator of the fraction. The denominator is cos(x) - sin(x) - cos(3x) + sin(3x).
Step 3: Expand the trigonometric expressions. We'll expand the trigonometric expressions in the denominator to simplify further.
Denominator = cos(x) - sin(x) - cos(3x) + sin(3x) = cos(x) - sin(x) - (cos(x)cos(2x) - sin(x)sin(2x)) + (sin(x)cos(2x) + cos(x)sin(2x))
Step 4: Combine like terms. Now we can combine like terms in the denominator.
Denominator = cos(x) - sin(x) - cos(x)cos(2x) + sin(x)sin(2x) + sin(x)cos(2x) + cos(x)sin(2x) = cos(x) - cos(x)cos(2x) + sin(x)cos(2x) + sin(x)sin(2x) + sin(x) + cos(x)sin(2x)
Step 5: Rearrange terms. We can rearrange the terms in the denominator for better organization.
Denominator = cos(x) - cos(x)cos(2x) + sin(x)cos(2x) + sin(x)sin(2x) + sin(x) + cos(x)sin(2x) = - cos(x)cos(2x) + sin(x)cos(2x) + cos(x)sin(2x) + sin(x)sin(2x) + cos(x) + sin(x)
Step 6: Simplify the denominator further. We can factor out common terms from the denominator to simplify it.
Denominator = cos(2x)(sin(x) + cos(x)) + sin(2x)(sin(x) + cos(x)) + cos(x) + sin(x) = (sin(x) + cos(x))(cos(2x) + sin(2x)) + cos(x) + sin(x)
Step 7: Simplify the denominator even further. Using the trigonometric identity cos(2x) + sin(2x) = 1, we can simplify the denominator.
Denominator = (sin(x) + cos(x))(cos(2x) + sin(2x)) + cos(x) + sin(x) = (sin(x) + cos(x))(1) + cos(x) + sin(x) = sin(x) + cos(x) + cos(x) + sin(x) = 2sin(x) + 2cos(x)
Step 8: Simplify the expression. Now that we have the simplified numerator and denominator, we can rewrite the expression.
F(x) = 1 / (2sin(3x)) * [2(sin(2x) + cos(2x))] / [cos(x) - sin(x) - cos(3x)


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili