Вопрос задан 11.02.2021 в 11:09. Предмет Алгебра. Спрашивает Балабанов Дима.

Помогите пожалуйста,срочнорешить графически


0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Журавль Юлия.
√(2x)=1/(x-1)+1   ОДЗ: 2х≥0  х≥0
√(2x)=(1+x-1)/(x-1)
√(2x)=x/(x-1) ⇒ 
x/(x-1)≥0
-∞____+___0____-____1____+____+∞
x∈(-∞;0]U[1;+∞)
Возведём обе части уравнения в квадрат:
2х=х²/(х-1)²
x²/(x-1)²-2x=0
x(x/(x-1)²-2)=0
x₁=0  x∈.
x/(x-1)²-2=0
x/(x-1)²=2
x=2(x-1)²=2(x²-2x+1)=2x²-4x+2
2x²-5x+2=0  D=9
x₂=2  х₂∈  x₃=0,5  х∉
Ответ: х₁=0  х₂=2 

∛x+2x+3=0
∛x=-(2x+3)
Возводим в куб обе части уравнения:
x=-(2x+3)³
x=-(8x³+36x²+54x+27)
8x³+36x²+55x+27=0
x₁=-1
8x³+36x²+55x+27 I_x+1_
8x³+8x²               I  8x²+28x+27
-----------
      28x²+55x
      28x²+28x
      --------------
              27x+27
              27x+27
              ----------
                      0
8x²+28x+27=0  D=-80  ⇒
Это уравнение действительных корней не имеет.
Ответ: х=-1

√(3х)-2=2/(х-1)    ОДЗ:  3х≥0  x≥0  x-1≠0  x≠1  ⇒ x∈[0;1)U(1;+∞)
√(3x)=2/(x-1)+2
√(3x)=(2+2x-2)/(x-1)
√(3x)=2x/(x-1)  ⇒
2x/(x-1)≥0
x/(x-1)≥0
-∞___+___0___-___1___+___+∞
x∈(-∞;0]U[1;+∞)
Возводим левую и правую части уравнения в квадрат:
3x=(2x)²/(x-1)²
3x(x-1)²=(2x)²
3x³-6x²+3x=4x²
3x³-10x²+3x=0
x(3x²-10x+3)=0
x₁=0  x₁∈
3x₂-10x+3=0  D=64
x₂=3  x₂∈  x₃=1/3   x₃∉
Ответ: х₁=0  х₂=3

x^(1/4)=3-2x³  
 ОДЗ:  x≥0   3-2x³≥0  x≤∛1,5≈1,225  ⇒x<1,225  x∈[0;1,225)  ⇒
x=1.
Ответ: х=1.
















0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос