Вопрос задан 22.01.2021 в 11:19. Предмет Алгебра. Спрашивает Фенцель Артём.

Срочно

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сатыбаев Нурдаулет.
 \frac{x-49}{50} + \frac{x-50}{49} = \frac{49}{x-50}+ \frac{50}{x-49}

\frac{49(x-49)+50(x-50)}{50*49} = \frac{49(x-49)+50(x-50)}{(x-50)*(x-49)}

\frac{49x-49^2+50x-50^2}{50*49} = \frac{49x-49^2+50x-50^2}{(x-50)*(x-49)}

\frac{99x-49^2-50^2}{50*49} = \frac{99x-49^2-50^2}{(x-50)*(x-49)}

(99x-49^2-50^2)*[\frac{1}{50*49} - \frac{1}{(x-50)*(x-49)}]=0

данное уравнение равносильно совокупности системы и уравнения:

рассмотрим сначала систему:

 \left \{ {{99x-49^2-50^2=0} \atop {x \neq 49,and,x \neq 50}} \right.;
 \left \{ {{99x=4901} \atop {x \neq 49,and,x \neq 50}} \right.;
 \left \{ {{x= \frac{4901}{99} } \atop {x \neq 49,and,x \neq 50}} \right.;
x= \frac{4901}{99}

получили, что число  \frac{4901}{99} - корень исходного уравнения

рассмотрим теперь уравнение из совокупности:

\frac{1}{50*49} - \frac{1}{(x-50)*(x-49)}=0

\frac{(x-50)(x-49)-50*49}{50*49*(x-50)*(x-49)}=0

\frac{x^2-50x-49x+50*49-50*49}{(x-50)*(x-49)}=0

\frac{x^2-99x}{(x-50)*(x-49)}=0

\frac{x(x-99)}{(x-50)*(x-49)}=0

 \left \{ {{x(x-99)=0} \atop {(x-50)*(x-49) \neq 0}} \right. ;
 \left \{ {{x=0,or,x=99} \atop {x \neq 50,and,x \neq 49}} \right.

x=0,or,x=99

получили, что числа  0 и  99 также являются корнями исходного уравнения

Ответ:  0;99; \frac{4901}{99}
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос