Вопрос задан 13.11.2020 в 06:36. Предмет Алгебра. Спрашивает Пичахчи Анна.

составьте уравнение прямой, которая параллельно прямой y=4x+9 и проходит через центр окружности

x^2+y^2+12x+8y+50=0
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кравченко Елизавета.
x^2+12x+36+y^2+8y+16=2\\ \\ (x+6)^2+(y+4)^2=2

Центр окружности: (-6;-4)

Пусть y = kx + b - общий вид уравнения прямой.

Искомая прямая параллельна прямой у=4х + 9, то есть, угловые коэффициенты равны

y = 4x + b

И проходит через центр окружности: -4 = 4 * (-6) + b

-4 = -24 + b

b = 20


Искомая прямая: y = 4x + 20
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос