
По наклонной плоскости запускают кубик.Как с помощью линейки и фотокамеры с функцией скоростной
съемки можно определить коэффициент трения между кубиком и наклонной плоскостью?!Мне нужны формулы подходящие под эту задачу!!!Принцип действия я знаю...нужны формулы по определению силы реакции опоры,или коэффициента трения,чтобы присутствовали такие величины,как время,расстояние и ускорение...пожалуйста,если кто то знает,то помогите,нужно очень срочно!!!!За ранее спасибо!!!

Ответы на вопрос

Ну-с, неужели никто не предложил? Я бы сделал в такой ситуации так: (предположу, что на камере фиксируется время)
1).определил бы ускорение следующим способом:
запустил бы кубик, дождался бы, пока он пройдет часть длины наклонной плоскости(скажем одну треть) и замерил бы с помощью фотокамеры время, за которое он это сделал, т.е. мы получаем среднюю скорость:
vср=s/t
затем так же проделал бы со вторым и третьим отрезком.
потом определил бы ускорение, вычтя из 2 скорости первую, и поделив результат на время, за которое кубик прошел оба отрезка:
a=(v2-v1)/(t2+t1).
сделал бы аналогичное не с 1 и 2 отрезком, а со 2 и 3 для проверки точности вычисления, если результаты значительно отличались бы - взял бы среднее арифметическое от 2 результатов:
aитоговое=(a2+a1)/2
2).Определил бы синус и косинус угла А(угла наклона плоскости):
Измерил бы линейкой все 3 стороны треугольника
Синус А - это отношение противолежащего катета к гипотенузе.
Косинус А - отнощение прилежащего катета к гипотенузе.
3). И по формуле:
a=g(sinA-ucosA)
определил бы коэффициент полезного действия, обозначенный буквой u.
Все!.



Для определения коэффициента трения между кубиком и наклонной плоскостью можно воспользоваться вторым законом Ньютона, а именно уравнением движения. Давайте разберемся, как это сделать.
Обозначим следующие величины: - \( m \) - масса кубика, - \( g \) - ускорение свободного падения (приблизительно 9.8 м/с² на поверхности Земли), - \( \theta \) - угол наклона плоскости.
Вертикальная составляющая силы тяжести \( F_{\text{тяж}} \) будет равна \( m \cdot g \cdot \cos(\theta) \), а горизонтальная составляющая \( F_{\text{тяж, гор}} \) будет равна \( m \cdot g \cdot \sin(\theta) \).
На наклонной плоскости действует сила нормальной реакции \( N \) и сила трения \( F_{\text{тр}} \). Учитывая, что кубик находится в покое по вертикали, сила нормальной реакции равна вертикальной составляющей силы тяжести:
\[ N = m \cdot g \cdot \cos(\theta) \]
Горизонтальная составляющая уравнения движения:
\[ F_{\text{тр}} = m \cdot g \cdot \sin(\theta) \]
Сила трения связана с нормальной реакцией уравнением трения:
\[ F_{\text{тр}} = \mu \cdot N \]
где \( \mu \) - коэффициент трения между кубиком и плоскостью. Подставим значение \( N \) из первого уравнения:
\[ \mu \cdot m \cdot g \cdot \cos(\theta) = m \cdot g \cdot \sin(\theta) \]
Масса кубика сокращается, и мы получаем:
\[ \mu = \frac{\sin(\theta)}{\cos(\theta)} = \tan(\theta) \]
Таким образом, коэффициент трения равен тангенсу угла наклона плоскости. Вы можете измерить угол наклона плоскости с помощью линейки и определить коэффициент трения.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili