
Вопрос задан 24.06.2019 в 00:57.
Предмет Физика.
Спрашивает Сербин Женя.
Каково давление воздуха в шахте на глубине 1 км, если считать, что температура по всей высоте
постоянная и равна 22 °С, а ускорение свободного падения не зависит от высоты? Давление воздуха у поверхности Земли равно p0.

Ответы на вопрос

Отвечает Борцов Егор.
Из аэродинамики известна следующая формула для соотношения давлений и площадей:
p/p0=ρ/ ρ0=e^(-z/H),
где z- высота исследуемого слоя воздуха (в метрах; вверх от поверхности Земли)
p – давление в исследуемой точке
p0 – давление у поверхности Земли
ρ и ρ0 – плотности в исследуемой точке и у поверхности
e – основание натурального логарифма, равное 2,718
H – высота однородной атмосферы, т. е. , такая высота, которую имел бы слой воздуха, если бы он был несжимаем. Она равна 8425 м.
Однако эта формула не дает взаимосвязи плотностей с температурой в явном виде. Для этого используется другая формула:
ρ/ρ0=(1-(β• z /T0))^((T0•γ0/ β• p0)-1)
здесь β – градиент температуры, град/м, т. е, величина, показывающая на сколько градусов изменяется температура при изменении высоты z на один метр;
T0 – температура у пов-сти Земли
γ0 – удельный вес воздуха, Н/м^3.
Поскольку из условия задачи температура с высотой не меняется, то ее градиент β равен 0. Из второй формулы получим
ρ/ρ0=(1-0)^∞ =1, т. е, плотность с высотой так же не меняется, а зависит только от давления. Тогда остается справедливым уравнение 1. Подставляя в нее значения, имеем
p/p0 =2,718^(-(-1000)/8425)=1,126.
Тогда давление на интересующей нас высоте
p =1,126p0.
Вот примерно так))) )
p/p0=ρ/ ρ0=e^(-z/H),
где z- высота исследуемого слоя воздуха (в метрах; вверх от поверхности Земли)
p – давление в исследуемой точке
p0 – давление у поверхности Земли
ρ и ρ0 – плотности в исследуемой точке и у поверхности
e – основание натурального логарифма, равное 2,718
H – высота однородной атмосферы, т. е. , такая высота, которую имел бы слой воздуха, если бы он был несжимаем. Она равна 8425 м.
Однако эта формула не дает взаимосвязи плотностей с температурой в явном виде. Для этого используется другая формула:
ρ/ρ0=(1-(β• z /T0))^((T0•γ0/ β• p0)-1)
здесь β – градиент температуры, град/м, т. е, величина, показывающая на сколько градусов изменяется температура при изменении высоты z на один метр;
T0 – температура у пов-сти Земли
γ0 – удельный вес воздуха, Н/м^3.
Поскольку из условия задачи температура с высотой не меняется, то ее градиент β равен 0. Из второй формулы получим
ρ/ρ0=(1-0)^∞ =1, т. е, плотность с высотой так же не меняется, а зависит только от давления. Тогда остается справедливым уравнение 1. Подставляя в нее значения, имеем
p/p0 =2,718^(-(-1000)/8425)=1,126.
Тогда давление на интересующей нас высоте
p =1,126p0.
Вот примерно так))) )


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili