Вопрос задан 23.02.2019 в 10:45. Предмет Физика. Спрашивает Мурашов Игорь.

При игре в настольный теннис игрок бьёт по шарику ракеткой,движущейся со скоростью 5м/с.Масса

ракетки 400гр.Скорость движения шарика до удара 3м/с,масса шарика 20гр. Какова будет скорость шарика после удара,если кинетическая энергия ракетки уменьшиться на 0.5Дж.Промежуточные и окончательные расчёты округлить до тысячных долей
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баляев Саша.
Введём определения:

M, Vo и V – масса и скорости ракетки до и после удара в ЛСО, для определённости они направлены вправо;

m, vo и v – масса и скорости мячика до и после удара в ЛСО, для определённости: мячик всегда летит от ракетки вправо, вначале небыстро, а потом – быстрее;

Для учёта встречного к ракетке движения мячика, в качестве альтернативного условия – будем использовать знак минус перед vo.

u – скорость центра масс системы, которая не меняется, она, очевидно, направлена вправо (масса и скорость ракетки больше массы и скорости мячика);

V1 и V2 – скорости ракетки до и после удара в СЦМ, для определённости: сначала ракетка летит вправо на мячик, а после удара – влево от мячика;

v1 и v2 – скорости мячика до и после удара в СЦМ, для определённости: сначала мячик летит влево на ракетку, а после удара – вправо от ракетки;

Общий импульс системы:   MVo + mvo ;

Центр масс движется со скоростью u, для которой из соображений общего импульса верно, что:   (M+m)u = MVo + mvo ;

u = [ MVo + mvo ]/[M+m] ;

При переходах из ЛСО в СЦМ, получаем:

V1 = Vo – u = Vo – [ MVo + mvo ]/[M+m] = m(Vo–vo)/[M+m] ;

До удара по закону сохранения импульса в СЦМ: MV1 = mv1 ;

v1 = [M/m] V1 ;

После реального удара с частичной потерей энергии:

MV2 = mv2 ;

v2 = [M/m] V2 ;

Т.е.:   v2/v1 = V2/V1 = β , или проще говоря, обе скорости уменьшатся одинаково, с некоторым β-коэффициентом ( β² –коэффициент потери энергии ) :

0 < β < 1 ;

В СЦМ после абсолютно упругого удара скорости просто бы развернулись (считаем удар лобовым), сохранившись по модулю, так чтобы импульс по прежнему был бы равен нолю. Но в данном случае, скорости и ракетки и мячика уменьшатся:

V2 = βV1 ;

V = u–V2 = u–βV1 ;

Потеря энергии ракетки:

∆Eк = [M/2] ( Vo² – V² ) = [M/2] ( Vo² – ( u – βV1 )² ) – квадратичная функция относительно β. Найдём экстремум:

( Vo² – ( u – βV1 )² )' = 2( u – βV1 ) V1 = 0 ;

βэкс = u/V1 = [ MVo + mvo ] / [ mVo – mvo ] = [ MVo/[mvo] + 1 ] / [ Vo/vo – 1 ] ;

Если мячик всё время движется направо, то:

βэкс = [ MVo/[mvo] + 1 ] / [ Vo/vo – 1 ] ≈ [ 2/0.06 + 1 ] / [ 5/3 – 1 ] ≈ 51.5 ;

При β=0 : ∆Eк = [M/2] ( Vo² – u² ) = [M/2](Vo–u)(Vo+u) =
= [M/2] V1 ( Vo + [ M Vo + m vo ]/[M+m] ) =
= [M/2] m(Vo–vo)/[M+m] ( 2MVo + m(Vo+vo) )/[M+m] =
= ( MVo + m(Vo+vo)/2 ) Mm(Vo–vo)/(M+m)² ;

При β=1 : ∆Eк = [M/2] ( Vo² – ( 2u – Vo )² ) = 2uM ( Vo – u ) = 2Mu V1 =
= 2 ( MVo + mvo ) mM(Vo–vo)/(M+m)² ;

При β=0 : ∆Eo = ( MVo + m(Vo+vo)/2 ) mM(Vo–vo)/(M+m)² ≈
≈ ( 2 + 0.02*4 )*0.008*2/0.42² ≈ 416/2205 ≈ 0.189 Дж ;

При β=1 : ∆E1 = 2 ( MVo + mvo ) mM(Vo–vo)/(M+m)² ≈
≈ 2 ( 2 + 0.06 )*0.008*2/0.42² ≈ 824/2205 ≈ 0.374 Дж ;

Так что вариант, когда мячик всё время движется вперёд с разгоном после удара – невозможен с потерей энергии ракетки в 0.5 Дж.


Если мячик сначала движется налево, а после удара – направо, то:

βэкс = [ MVo/[–mvo] + 1 ] / [ Vo/[–vo] – 1 ] ≈ [ –2/0.06 + 1 ] / [ –5/3 – 1 ] ≈ 12.125 ;

При β=0 : ∆Eo = ( MVo + m(Vo–vo)/2 ) mM(Vo+vo)/(M+m)² ≈
≈ ( 2 + 0.02 )*0.008*8/0.42² ≈ 1616/2205 ≈ 0.733 Дж ;

При β=1 : ∆E1 = 2 ( MVo – mvo ) mM(Vo+vo)/(M+m)² ≈
≈ 2 ( 2 – 0.06 )*0.008*8/0.42² ≈ 3104/2205 ≈ 1.41 Дж ;

Так что вариант, когда мячик сначала летит влево на ракетку, а потом после удара вправо от ракетки – тоже невозможен со значением в потере энергии в 0.5 Дж ! :–)



У нелепой задачи нет нормального решения :–)

*** отметьте, пожалуйста, это решение лучшим, чтобы сохранялась последовательность в рассуждениях.
0 0
Отвечает Пономаренко Макс.
Однако можно допустить, что во время удара, ракетка «рвётся» и мячик проходит сквозь неё как сквозь марлю.

В случае если бы прорывание ракетки было абсолютным, т.е. в ракетке с самого начала было бы отверстие, то изменение кин. энергии ракетки было бы равно нулю (β=–1).

Если бы рвущаяся ракетка догоняла бы мячик, то потеря энергии ракетки, при этом, лежала бы в диапазоне: 0–0.189 Дж, что нас не устраивает.

А вот если бы рвущаяся ракетка шла навстречу мячику, то потеря энергии ракетки, при этом, лежала бы в :  0–0.733 Дж, что нас КАК РАЗ ПОЛНОСТЬЮ устраивает.


Чтобы всё было логично со знаками, сделаем переопределения:

M, Vo и V – масса и скорости ракетки до и после прорыва в ЛСО: они направлены вправо;

m, vo и v – масса и скорости мячика до и после прорыва в ЛСО: мячик летит на ракетку влево, и после того, как он прорывает её – он продолжает лететь влево.

Если у v – окажется отрицательное значение, то это просто скажет о том, что мячик с некоторой небольшой скоростью, но всё-таки полетит вслед за ракеткой вправо после прорыва.

u – скорость центра масс системы, которая не меняется;

V1 и V2 – скорости ракетки до и после прорыва в СЦМ: ракетка всё время движется вправо, после прорыва – её скорость падает;

v1 и v2 – скорости мячика до и после прорыва в СЦМ: мячик всё время летит влево на ракетку, после прорыва – его скорость падает;

Общий импульс:   MVo – mvo ;

Центр масс движется со скоростью u, для которой верно, что:   (M+m)u = MVo – mvo ;

u = [ MVo – mvo ]/[M+m] ;

При переходах из ЛСО в СЦМ, получаем:

V1 = Vo – u = Vo – [ MVo – mvo ]/[M+m] = m(Vo+vo)/[M+m] ;

До прорыва по закону сохр. имп. в СЦМ: MV1 = mv1 ;

v1 = [M/m] V1 ;

После прорыва с частичной потерей энергии:

MV2 = mv2 ;

v2 = [M/m] V2 ;

Т.е.:   v2/v1 = V2/V1 = β , т.е. обе скорости уменьшатся одинаково, с некоторым β-коэффициентом ( β² – коэфф. потери энергии при прорыве ракетки ) :

0 < β < 1 ;

В СЦМ при отсутствии взаимодействия (мячик проходит в отверстие) – скорости просто сохранились бы, так чтобы импульс по прежнему был бы равен нолю. Но в данном случае, скорости и ракетки и мячика уменьшатся, сохранив направления:

V2 = βV1 ;

V = u+V2 = u+βV1 ;

Потеря энергии ракетки:

∆Eк = [M/2] ( Vo² – V² ) = [M/2] ( Vo² – ( u+βV1 )² ) ;

2∆Eк/M = Vo² – ( u+βV1 )² ;

V1² β² + 2uV1 β – ( Vo² – u² – 2∆Eк/M ) = 0 ;

V1 β² + 2u β – ( Vo² – u² – 2∆Eк/M )/V1 = 0 ;

D = u² + Vo² – u² – 2∆Eк/M = Vo² – 2∆Eк/M


β = ( –u ± √[ Vo² – 2∆Eк/M ] ) / V1 = [ √[ Vo² – 2∆Eк/M ] – u ] / V1 ;

β = √[ Vo² – 2∆Eк/M ] / V1 – u/V1 =

= [1+M/m]/[Vo+vo] √[ Vo² – 2∆Eк/M ] – [ MVo/mvo – 1 ] / [ Vo/vo + 1 ] =

= [1+M/m] √[ 1/(1+vo/Vo)² – 2∆Eк/[M(Vo+vo)²] ] – [ MVo/mvo – 1 ] / [ Vo/vo + 1 ] ;

β ≈ 21 √[ 1/(1+3/5)² – 1/[0.4*64] ] – [ 2/0.06 – 1 ] / [ 5/3 + 1 ] ≈

≈ 63/16 √10 – 12.125 ≈ 0.326 ;

всё в порядке! вариант прорыва возможен, поскольку: 0 < β < 1 ;


v2 = βv1 = ( √[ Vo² – 2∆Eк/M ] – u ) v1/V1 = ( √[ Vo² – 2∆Eк/M ] – u ) M/m ;

v = v2 – u = ( √[ Vo² – 2∆Eк/M ] – u ) M/m – u =

= [M/m] √[ Vo² – 2∆Eк/M ] – u(M+m)/m =

= [M/m] √[ Vo² – 2∆Eк/M ] – [MVo–mvo]/m =

= vo + [M/m] ( √[ Vo² – 2∆Eк/M ] – Vo ) ;

v = vo + [M/m] ( √[ Vo² – 2∆Eк/M ] – Vo) ≈ 3 + 20 ( √[ 25 – 1/0.4 ] – 5 ) ≈

≈ 3 + 20 ( 1.5 √10 – 5 ) ≈ 3 + 30 √10 – 100 ≈ –2.13 м/c ;

(будет направлена вправо, отставая от порванной ракетки) ;


О скорости ракетки:

∆Eк = Eкo – Eк ;

∆Eк = MVo²/2 – MV²/2 ;

V² = Vo² – 2∆Eк/M ;

V = √[ Vo² – 2∆Eк/M ] ≈ √[ 25 – 1/0.4 ] ≈ 1.5 √10 ≈ 4.74 м/с (правильно, прорванная ракетка будет обгонять, только что прорвавший её и летящий позади мячик).



***

Если же составители задачи надеялись, что нужно просто посчитать изменение скорости и импульса ракетки через изменение её энергии, а потом потерянный ею импульс прибавить к импульсу мячика, то они ошиблись, поскольку тогда из ниоткуда взялась бы энергия:

Посмотрим:

V = √[ Vo² – 2∆Eк/M ] ;

∆p = M(Vo–V) = M ( Vo – √[ Vo² – 2∆Eк/M ] ) = m∆v ;

∆v = [M/m] ( Vo – √[ Vo² – 2∆Eк/M ] ) ;

v = vo + ∆v = vo + [M/m] ( Vo – √[ Vo² – 2∆Eк/M ] ) ;

v = vo + [M/m] ( Vo – √[ Vo² – 2∆Eк/M ] ) ≈
≈ 3 + 20 ( 5 – √[ 25 – 1/0.4 ] ) ≈ 3 + 20 ( 5 – 1.5√10 ) ≈ 103 – 30√10 ≈ 8.13 м/с.

При этом энергия мячика возрастает:

∆Eк = m/2 (v²–vo²) ≈ 0.01 (8.13²–3²) ≈ 0.57 Дж,     что невозможно, поскольку энергия ракетки уменьшается по условию только на 0.5 Дж, а предполагается использование законов сохранения, т.е. ракетка рассматривается, как бы на мгновение удара – оторвавшейся от руки отбивающего.

Можно, конечно «догадаться», что изменение скорости налетающего мяча нужно считать в сторону вычитания, а не в сторону сложения, вот только откуда понять, что мяч налетает на ракетку и что он её порвёт, а не отскочит – ну совершенно непонятно без глубокого анализа.



ОТВЕТ: скорость мяча :  v ≈ 2.13 м/c  ,    при этом он прорвёт ракетку и будет лететь в ту же сторону, что и ракетка, постепенно отставая от неё (скорость ракетки 4.74 м/с после прорыва).
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Final Velocity of the Ball

To calculate the final velocity of the ball after the hit, we can use the principle of conservation of momentum. According to this principle, the total momentum before the hit is equal to the total momentum after the hit.

The momentum of an object is given by the product of its mass and velocity. Therefore, we can write the equation:

Initial momentum of the racket + Initial momentum of the ball = Final momentum of the racket + Final momentum of the ball

The initial momentum of the racket is given by the product of its mass and velocity:

Initial momentum of the racket = mass of the racket * velocity of the racket

Similarly, the initial momentum of the ball is given by the product of its mass and velocity:

Initial momentum of the ball = mass of the ball * velocity of the ball

Since the racket and the ball are the only objects involved in the collision, the final momentum of the racket and the final momentum of the ball will be zero, as they come to rest after the hit.

Therefore, we can rewrite the conservation of momentum equation as:

mass of the racket * velocity of the racket + mass of the ball * velocity of the ball = 0

Now, let's substitute the given values into the equation and solve for the final velocity of the ball.

Given: - Mass of the racket (m_racket) = 400 grams = 0.4 kg - Velocity of the racket (v_racket) = 5 m/s - Mass of the ball (m_ball) = 20 grams = 0.02 kg - Velocity of the ball before the hit (v_ball_initial) = 3 m/s - Change in kinetic energy of the racket (ΔKE_racket) = -0.5 J

Substituting the values into the equation:

0.4 kg * 5 m/s + 0.02 kg * 3 m/s = 0

Simplifying the equation:

2 kg m/s + 0.06 kg m/s = 0

2.06 kg m/s = 0

Since the sum of the momenta is zero, the final velocity of the ball will also be zero.

Therefore, the final velocity of the ball after the hit is 0 m/s.

Please note that the given change in kinetic energy of the racket (-0.5 J) does not affect the final velocity of the ball, as the conservation of momentum principle only considers the momentum of the objects involved in the collision.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос