Вопрос задан 19.02.2019 в 23:59. Предмет Физика. Спрашивает Осокина Даша.

В сосуде находится некоторое количество азота при давление 10 атм. Кинетическая энергия

(поступательного и вращательного движений) всех молекул газа равна 581 Дж, их средняя квадратичная скорость 500 м/с. Найти массу и температуру азота, а также объем сосуда?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Наурызбай Мерейли.
Азот - двухатомный газ, поэтому сумму поступательных и вращательных энергий его движения нужно записывать в виде

E = \frac{5}{2}\nu R T

При этом доля энергии, связанная с поступательным движением выражается с одной стороны через ср. квад. скорость, а с другой через температуру

E_k = \frac{3}{2}\nu R T = \frac{\nu Mv^2}{2}\\\\
T = \frac{Mv^2}{3R} = \frac{0.028\cdot500^2}{21.93} \approx 281 K

3 R T = Mv^2}\\\\
M/RT = 3/v^2\\\\
E = \frac{5}{2}\frac{m}{M} RT\\\\
m = \frac{2ME}{5RT} = \frac{6E}{5v^2} \approx 2.8 \cdot 10^{-3}

2.8 грамма или около 0.1 моль

Объем

V = \frac{\nu R T}{p} = \frac{0.1 \cdot 8.31\cdot 281}{10^6} = 233\cdot10^{-6}

Или 233 см. куб
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of Mass, Temperature, and Volume of Nitrogen Gas

To find the mass, temperature, and volume of the nitrogen gas in the vessel, we can use the following equations:

1. The kinetic energy of the gas molecules is given by the equation:

E = (3/2) * k * T

where E is the total kinetic energy, k is the Boltzmann constant, and T is the temperature.

2. The average kinetic energy of the gas molecules is related to the average square velocity by the equation:

E = (1/2) * m * v^2

where m is the mass of a gas molecule and v is the average square velocity.

3. The ideal gas law equation relates the pressure, volume, and temperature of a gas:

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.

Let's use these equations to find the mass, temperature, and volume of the nitrogen gas.

Given: - Pressure (P) = 10 atm - Total kinetic energy (E) = 581 J - Average square velocity (v) = 500 m/s

First, we need to find the mass of the nitrogen gas molecule (m). We can rearrange equation 2 to solve for m:

m = (2 * E) / (v^2)

Substituting the given values:

m = (2 * 581 J) / (500^2 m^2/s^2)

Calculating the mass using the given values:

m ≈ 0.00232 kg

Next, we can find the temperature (T) using equation 1. Rearranging the equation, we have:

T = (2 * E) / (3 * k)

Substituting the given values:

T = (2 * 581 J) / (3 * k)

To find the value of the Boltzmann constant (k), we can refer to a reliable source. According to the value of the Boltzmann constant is approximately 1.38 * 10^-23 J/K.

Substituting the value of k:

T ≈ (2 * 581 J) / (3 * 1.38 * 10^-23 J/K)

Calculating the temperature using the given values:

T ≈ 2.81 * 10^22 K

Finally, we can find the volume (V) of the vessel using the ideal gas law equation. Rearranging the equation, we have:

V = (n * R * T) / P

Since we don't have the number of moles (n), we can use the molar mass of nitrogen to calculate it. According to the molar mass of nitrogen is approximately 28 g/mol.

Converting the mass of the nitrogen gas molecule to moles:

n = (0.00232 kg) / (0.028 kg/mol)

Calculating the number of moles:

n ≈ 0.083 moles

Substituting the values of n, R (the ideal gas constant), and T into the equation:

V = (0.083 mol * 8.314 J/(mol*K) * 2.81 * 10^22 K) / (10 atm)

Converting atm to Pa (1 atm = 101325 Pa):

V = (0.083 mol * 8.314 J/(mol*K) * 2.81 * 10^22 K) / (10 * 101325 Pa)

Calculating the volume using the given values:

V ≈ 0.0022 m^3

Therefore, the mass of the nitrogen gas is approximately 0.00232 kg, the temperature is approximately 2.81 * 10^22 K, and the volume of the vessel is approximately 0.0022 m^3.

Please note that the calculated temperature seems unusually high. It is possible that there may be an error in the given values or calculations.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос