Вопрос задан 28.11.2023 в 01:19. Предмет Физика. Спрашивает Бутусова Ксения.

2. Через 1/6 мин. после начала движения поезд приобрел скорость 0,6 м/с. Через какое время после

начала движения скорость поезда станет равной 3 м/с? ответ должен быть 2м/с ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Евстафьев Алексей.

Ответ:

Дано:

t1=10c

v1=0,6м/с

v2=3м/с

Найти: t2

Скорость при равноускоренном движении: v2=v0+at2

Начальная скорость согласно условию v0=0

v2=at2 Выразим время: t2=v2a

v1=v0+at1=at1 a=v1t1

t2=v2v1t1=v2t1v1

t2=3∗100,6=50c

Объяснение:

только так получается , сорри если не правильно

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберем эту задачу.

По условию, скорость поезда через \( \frac{1}{6} \) минуты после начала движения составляет 0,6 м/с.

Чтобы найти время, через которое скорость поезда станет равной 3 м/с, мы можем использовать формулу равномерного движения:

\[ \text{Скорость} = \frac{\text{путь}}{\text{время}} \]

Сначала найдем ускорение поезда:

Ускорение \( a \) можно найти, разделив изменение скорости на изменение времени:

\[ a = \frac{\Delta v}{\Delta t} \]

Изменение скорости \( \Delta v = 3 \, \text{м/с} - 0,6 \, \text{м/с} = 2,4 \, \text{м/с} \)

Изменение времени \( \Delta t \) можно найти, зная, что скорость увеличивается с \( 0,6 \, \text{м/с} \) до \( 3 \, \text{м/с} \):

\[ \Delta t = \frac{\Delta v}{a} = \frac{2,4 \, \text{м/с}}{a} \]

Теперь нам нужно найти расстояние, которое поезд прошел за это время, используя скорость 0,6 м/с:

\[ \text{Скорость} = \frac{\text{путь}}{\text{время}} \] \[ 0,6 \, \text{м/с} = \frac{s}{\frac{1}{6} \, \text{мин}} \]

Переведем время из минут в секунды: \( \frac{1}{6} \) мин = \( \frac{1}{6} \times 60 \) с = 10 с.

Теперь можем найти расстояние:

\[ 0,6 \, \text{м/с} = \frac{s}{10 \, \text{с}} \] \[ s = 0,6 \, \text{м/с} \times 10 \, \text{с} = 6 \, \text{м} \]

Теперь, когда у нас есть расстояние и изменение времени, мы можем найти ускорение:

\[ \Delta t = \frac{2,4 \, \text{м/с}}{a} \] \[ a = \frac{2,4 \, \text{м/с}}{\Delta t} = \frac{2,4 \, \text{м/с}}{10 \, \text{с}} = 0,24 \, \text{м/с}^2 \]

Теперь, когда у нас есть ускорение, мы можем найти время, через которое скорость станет равной 3 м/с:

\[ \Delta t = \frac{\Delta v}{a} = \frac{2,4 \, \text{м/с}}{0,24 \, \text{м/с}^2} = 10 \, \text{с} \]

Итак, время, через которое скорость поезда станет равной 3 м/с, составляет 10 секунд.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос