Вопрос задан 14.11.2023 в 04:22. Предмет Физика. Спрашивает Тимошенко Вика.

ОТВЕТТТТЬ УЖЕ ПОЖАЛУЙСТА В сосуде, теплоёмкость которого равна 192 Дж/°С, находится 2 л воды и 1

кг льда при 0°С. Чтобы получить воду с температурой 10 °С, в сосуд впускают водяной пар при 100 °С. Рассчитай массу пара. (Удельная теплоёмкость воды с=4200Джкг⋅° С, удельная теплота парообразования L =2260000 Дж/кг, удельная теплота плавления льда λ=330000 Дж/кг). Ответ (округли до целого числа): г.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Декало Алёна.

Ответ:

7360кдж

Объяснение:

Дано: m= 200г     t1= 20грc     t2=100грс     c=460дж\кг*с     анализ: q=cm(t2-t1)       решение:   q= 460дж\кг*с * 200г(100-20)= 7360000дж=7360кдж

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи можно воспользоваться законами сохранения энергии и учетом теплообмена. Общее количество тепла, необходимое для превращения льда при 0 °C в воду при 10 °C, можно выразить следующим образом:

\[ Q_{\text{потребуемое}} = Q_{\text{плавления}} + Q_{\text{нагрева воды}} \]

где

\[ Q_{\text{плавления}} = m_{\text{льда}} \cdot \lambda \]

\[ Q_{\text{нагрева воды}} = m_{\text{воды}} \cdot c_{\text{воды}} \cdot \Delta T \]

Здесь: - \( m_{\text{льда}} \) - масса льда, - \( \lambda \) - удельная теплота плавления льда, - \( m_{\text{воды}} \) - масса воды, - \( c_{\text{воды}} \) - удельная теплоёмкость воды, - \( \Delta T \) - изменение температуры воды.

Рассчитаем каждый компонент:

1. Удельная теплота плавления льда: \(\lambda = 330000 \, \text{Дж/кг}\)

\[ Q_{\text{плавления}} = 1 \, \text{кг} \cdot 330000 \, \text{Дж/кг} = 330000 \, \text{Дж} \]

2. Изменение температуры воды: \( \Delta T = 10 \, \text{°C} - 0 \, \text{°C} = 10 \, \text{°C} \)

\[ Q_{\text{нагрева воды}} = 2 \, \text{л} \cdot 1000 \, \text{г/л} \cdot 4200 \, \text{Дж/г/°C} \cdot 10 \, \text{°C} = 84000 \, \text{Дж} \]

Теперь сложим оба компонента:

\[ Q_{\text{потребуемое}} = 330000 \, \text{Дж} + 84000 \, \text{Дж} = 414000 \, \text{Дж} \]

Теперь учтем, что это тепло должно быть равно теплу, выделяемому водяным паром при конденсации:

\[ Q_{\text{пара}} = m_{\text{пара}} \cdot L \]

где: - \( m_{\text{пара}} \) - масса пара, - \( L \) - удельная теплота парообразования.

Подставим известные значения:

\[ m_{\text{пара}} = \frac{Q_{\text{потребуемое}}}{L} = \frac{414000 \, \text{Дж}}{2260000 \, \text{Дж/кг}} \approx 0.183 \, \text{кг} \]

Ответ: масса водяного пара, необходимого для превращения данного объема воды и льда при 0 °C в воду при 10 °C, составляет примерно 0.183 кг.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос