
Людина переміщується вздовж дороги, що має форму прямокутника зі сторонами 21 м і 28 м. Визначити
шлях і переміщення людини (оформлення до задачі!) СРОЧНО РЕБЯТ!!С ПОЛНЫМ РЕШЕНИЕМ ПОЖАЛУЙСТА!!!

Ответы на вопрос

Для визначення шляху і переміщення людини відобразимо ситуацію на прямокутнику.
Задача зводиться до обчислення довжини шляху, який пройшла людина, і величини переміщення, тобто відстані між початковою і кінцевою точками її руху.
Прямокутник має сторони 21 м і 28 м. Для обчислення довжини шляху людини використовуємо теорему Піфагора, оскільки людина рухається вздовж діагоналі прямокутника:
Шлях=212+282=441+784=1225=35м.Шлях=212+282
=441+784
=1225
=35м.
Тепер давайте обчислимо переміщення, яке є відстанню між початковою і кінцевою точками руху людини. Переміщення можна знайти за допомогою теореми Піфагора, використовуючи сторони прямокутника:
Переміщення=212−282=441+784=−343.Переміщення=212−282
=441+784
=−343
.
Примітка: Від'ємне значення переміщення вказує, що людина рухалася вздовж іншої діагоналі прямокутника.
Завдання може бути вирішено інакше, якщо ми знаємо напрямок руху людини вздовж прямокутника. В цьому випадку переміщення буде дорівнювати довжині відповідної сторони прямокутника.



Звісно, давайте розглянемо задачу.
Умова задачі: Людина рухається вздовж дороги, яка має форму прямокутника зі сторонами 21 м і 28 м. Потрібно визначити шлях і переміщення людини.
Розв'язання: 1. Визначення шляху: Для знаходження шляху, який пройшла людина, скористаємося теоремою Піфагора для прямокутного трикутника. Довжина шляху (гіпотенуза) визначається за формулою: \[c = \sqrt{a^2 + b^2},\] де \(a\) та \(b\) - катети прямокутного трикутника.
У нашому випадку, сторони прямокутника - катети \(a = 21 \ м\) і \(b = 28 \ м\). Підставимо ці значення у формулу: \[c = \sqrt{21^2 + 28^2}.\]
Обчислимо: \[c = \sqrt{441 + 784} = \sqrt{1225} = 35 \ м.\]
Отже, шлях, який пройшла людина, дорівнює \(35 \ м\).
2. Визначення переміщення: Переміщення - це відстань між початковим і кінцевим положеннями. У нашому випадку, початкове і кінцеве положення находяться на протилежних сторонах прямокутника.
Знаємо, що протилежні сторони прямокутника рівні. Тому переміщення можна знайти як периметр прямокутника: \[P = 2 \cdot (a + b).\]
Підставимо значення: \[P = 2 \cdot (21 + 28) = 2 \cdot 49 = 98 \ м.\]
Отже, переміщення людини дорівнює \(98 \ м\).
Відповідь: Шлях, який пройшла людина, становить \(35 \ м\), а переміщення - \(98 \ м\).


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili